Documentation Verification Report

Transport

📁 Source: Mathlib/CategoryTheory/Monoidal/Transport.lean

Statistics

MetricCount
DefinitionsInducingFunctorData, εIso, μIso, Transported, instMonoidalCategory, instMonoidalCategoryStruct, equivalenceTransported, fromInducedCoreMonoidal, fromInducedMonoidal, induced, instCategoryTransported, instInhabitedTransported, instMonoidalTransportedFunctorEquivalenceTransported, instMonoidalTransportedFunctorSymmEquivalenceTransported, instMonoidalTransportedInverseEquivalenceTransported, instMonoidalTransportedInverseSymmEquivalenceTransported, transport, transportStruct
18
Theoremsassociator_eq, leftUnitor_eq, rightUnitor_eq, tensorHom_eq, whiskerLeft_eq, whiskerRight_eq, instIsMonoidalTransportedCounitEquivalenceTransported, instIsMonoidalTransportedSymmEquivalenceTransported, instIsMonoidalUnitTransportedEquivalenceTransported, transportStruct_associator, transportStruct_leftUnitor, transportStruct_rightUnitor, transportStruct_tensorHom, transportStruct_tensorObj, transportStruct_tensorUnit, transportStruct_whiskerLeft, transportStruct_whiskerRight
17
Total35

CategoryTheory.Monoidal

Definitions

NameCategoryTheorems
InducingFunctorData 📖CompData
Transported 📖CompOp
3 mathmath: instIsMonoidalUnitTransportedEquivalenceTransported, instIsMonoidalTransportedCounitEquivalenceTransported, instIsMonoidalTransportedSymmEquivalenceTransported
equivalenceTransported 📖CompOp
3 mathmath: instIsMonoidalUnitTransportedEquivalenceTransported, instIsMonoidalTransportedCounitEquivalenceTransported, instIsMonoidalTransportedSymmEquivalenceTransported
fromInducedCoreMonoidal 📖CompOp
fromInducedMonoidal 📖CompOp
induced 📖CompOp
instCategoryTransported 📖CompOp
3 mathmath: instIsMonoidalUnitTransportedEquivalenceTransported, instIsMonoidalTransportedCounitEquivalenceTransported, instIsMonoidalTransportedSymmEquivalenceTransported
instInhabitedTransported 📖CompOp
instMonoidalTransportedFunctorEquivalenceTransported 📖CompOp
2 mathmath: instIsMonoidalUnitTransportedEquivalenceTransported, instIsMonoidalTransportedCounitEquivalenceTransported
instMonoidalTransportedFunctorSymmEquivalenceTransported 📖CompOp
1 mathmath: instIsMonoidalTransportedSymmEquivalenceTransported
instMonoidalTransportedInverseEquivalenceTransported 📖CompOp
2 mathmath: instIsMonoidalUnitTransportedEquivalenceTransported, instIsMonoidalTransportedCounitEquivalenceTransported
instMonoidalTransportedInverseSymmEquivalenceTransported 📖CompOp
1 mathmath: instIsMonoidalTransportedSymmEquivalenceTransported
transport 📖CompOp
transportStruct 📖CompOp
8 mathmath: transportStruct_associator, transportStruct_tensorHom, transportStruct_tensorObj, transportStruct_tensorUnit, transportStruct_whiskerRight, transportStruct_leftUnitor, transportStruct_rightUnitor, transportStruct_whiskerLeft

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalTransportedCounitEquivalenceTransported 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
Transported
instCategoryTransported
Transported.instMonoidalCategory
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
equivalenceTransported
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counit
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalTransportedInverseEquivalenceTransported
instMonoidalTransportedFunctorEquivalenceTransported
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Iso.instIsMonoidalInvFunctor
CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit
instIsMonoidalTransportedSymmEquivalenceTransported
instIsMonoidalTransportedSymmEquivalenceTransported 📖mathematicalCategoryTheory.Equivalence.IsMonoidal
Transported
instCategoryTransported
Transported.instMonoidalCategory
CategoryTheory.Equivalence.symm
equivalenceTransported
instMonoidalTransportedFunctorSymmEquivalenceTransported
instMonoidalTransportedInverseSymmEquivalenceTransported
CategoryTheory.Adjunction.instIsMonoidal
instIsMonoidalUnitTransportedEquivalenceTransported 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Transported
instCategoryTransported
CategoryTheory.Equivalence.functor
equivalenceTransported
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.unit
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.LaxMonoidal.comp
Transported.instMonoidalCategory
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalTransportedFunctorEquivalenceTransported
instMonoidalTransportedInverseEquivalenceTransported
CategoryTheory.Iso.instIsMonoidalInvFunctor
CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit
instIsMonoidalTransportedSymmEquivalenceTransported
transportStruct_associator 📖mathematicalCategoryTheory.MonoidalCategoryStruct.associator
transportStruct
CategoryTheory.Functor.mapIso
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.trans
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.whiskerRightIso
CategoryTheory.Functor.comp
CategoryTheory.Iso.symm
CategoryTheory.Iso.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.MonoidalCategory.whiskerLeftIso
transportStruct_leftUnitor 📖mathematicalCategoryTheory.MonoidalCategoryStruct.leftUnitor
transportStruct
CategoryTheory.Iso.trans
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.whiskerRightIso
CategoryTheory.Functor.comp
CategoryTheory.Iso.symm
CategoryTheory.Iso.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.Equivalence.counitIso
transportStruct_rightUnitor 📖mathematicalCategoryTheory.MonoidalCategoryStruct.rightUnitor
transportStruct
CategoryTheory.Iso.trans
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.whiskerLeftIso
CategoryTheory.Iso.symm
CategoryTheory.Functor.comp
CategoryTheory.Iso.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.Equivalence.counitIso
transportStruct_tensorHom 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorHom
transportStruct
CategoryTheory.Functor.map
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.inverse
transportStruct_tensorObj 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorObj
transportStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Equivalence.inverse
transportStruct_tensorUnit 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorUnit
transportStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
transportStruct_whiskerLeft 📖mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerLeft
transportStruct
CategoryTheory.Functor.map
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.inverse
transportStruct_whiskerRight 📖mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerRight
transportStruct
CategoryTheory.Functor.map
CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.inverse

CategoryTheory.Monoidal.InducingFunctorData

Definitions

NameCategoryTheorems
εIso 📖CompOp
5 mathmath: rightUnitor_eq, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CoalgCat.MonoidalCategory.inducingFunctorData_εIso, leftUnitor_eq, BialgCat.MonoidalCategory.inducingFunctorData_εIso
μIso 📖CompOp
9 mathmath: rightUnitor_eq, associator_eq, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, CoalgCat.MonoidalCategory.inducingFunctorData_μIso, tensorHom_eq, whiskerRight_eq, BialgCat.MonoidalCategory.inducingFunctorData_μIso, whiskerLeft_eq, leftUnitor_eq

Theorems

NameKindAssumesProvesValidatesDepends On
associator_eq 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.obj
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.symm
μIso
CategoryTheory.MonoidalCategory.tensorIso
CategoryTheory.Iso.refl
leftUnitor_eq 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.obj
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.symm
μIso
CategoryTheory.MonoidalCategory.tensorIso
εIso
CategoryTheory.Iso.refl
rightUnitor_eq 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.obj
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.symm
μIso
CategoryTheory.MonoidalCategory.tensorIso
CategoryTheory.Iso.refl
εIso
tensorHom_eq 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
μIso
CategoryTheory.Iso.hom
whiskerLeft_eq 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
μIso
CategoryTheory.Iso.hom
whiskerRight_eq 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
μIso
CategoryTheory.Iso.hom

CategoryTheory.Monoidal.Transported

Definitions

NameCategoryTheorems
instMonoidalCategory 📖CompOp
3 mathmath: CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, CategoryTheory.Monoidal.instIsMonoidalTransportedSymmEquivalenceTransported
instMonoidalCategoryStruct 📖CompOp

---

← Back to Index