| Name | Category | Theorems |
Respects π | CompData | 7 mathmath: IsLocalAtTarget.toRespects, instRespectsOfRespectsLeftOfRespectsRight, AlgebraicGeometry.HasRingHomProperty.respects_isOpenImmersion, AlgebraicGeometry.instRespectsSchemeLocallyQuasiFiniteIsOpenImmersion, instRespectsOfIsStableUnderComposition, AlgebraicGeometry.instRespectsSchemeSmoothIsOpenImmersion, IsLocalAtSource.toRespects
|
RespectsIso π | MathDef | 71 mathmath: instRespectsIsoInd, relative_respectsIso, AlgebraicGeometry.IsDominant.respectsIso, CategoryTheory.ObjectProperty.instRespectsIsoIsColocal, HomotopyCategory.respectsIso_quasiIso, AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.respectsIso, instRespectsIsoPullbacks, AlgebraicGeometry.affineAnd_respectsIso, RespectsIso.unop, RespectsIso.monomorphisms, TopCat.instRespectsIsoIsOpenEmbedding, RespectsIso.op, CategoryTheory.Functor.relativelyRepresentable.respectsIso, HomologicalComplex.instRespectsIsoQuasiIso, instRespectsIsoTop, AlgebraicGeometry.IsClosedImmersion.respectsIso, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenEmbedding, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedEmbedding, AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_mk, RespectsIso.diagonal, AlgebraicGeometry.affineLocally_respectsIso, AlgebraicGeometry.specializingMap_respectsIso, HomotopicalAlgebra.instRespectsIsoWeakEquivalencesOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsOfIsStableUnderComposition, AlgebraicGeometry.sourceLocalClosure.instRespectsIsoScheme, bijective_respectsIso, AlgebraicGeometry.instRespectsIsoSchemeSurjective, instRespectsIsoColimitsOfShape, RespectsIso.of_respects_arrow_iso, AlgebraicGeometry.UniversallyInjective.respectsIso, AlgebraicGeometry.stalkwise_respectsIso, AlgebraicGeometry.isOpenImmersion_respectsIso, RespectsIso.mk, isoClosure_eq_iff, instRespectsIsoTransfiniteCompositionsOfShape, map_respectsIso, IsStableUnderBaseChange.respectsIso, CategoryTheory.ObjectProperty.instRespectsIsoTrW, AlgebraicGeometry.sourceAffineLocally_respectsIso, AlgebraicGeometry.HasAffineProperty.instRespectsIsoScheme, inf, injective_respectsIso, RespectsIso.isomorphisms, IsStableUnderCobaseChange.respectsIso, CategoryTheory.NatTrans.instRespectsIsoFunctorCoequifibered, AlgebraicGeometry.topologically_respectsIso, RespectsIso.epimorphisms, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyInjective, RingHom.toMorphismProperty_respectsIso_iff, AlgebraicGeometry.instRespectsIsoSchemeTargetAffineLocallyOfToProperty, universally_respectsIso, surjective_respectsIso, respectsIso_of_isStableUnderComposition, instRespectsIsoPushouts, instRespectsIsoLimitsOfShape, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedMap, regularEpi.respectsIso, AlgebraicGeometry.IsSeparated.instRespectsIsoScheme, AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_of, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyGeneralizingMap, instRespectsIsoOfIsStableUnderRetracts, RespectsIso.inverseImage, isoClosure_respectsIso, CategoryTheory.ObjectProperty.instRespectsIsoIsLocal, AlgebraicGeometry.universallyClosed_respectsIso, AlgebraicGeometry.UniversallyOpen.instRespectsIsoScheme, CategoryTheory.NatTrans.instRespectsIsoFunctorEquifibered, AlgebraicGeometry.IsProper.instRespectsIsoScheme, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenMap, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsEmbedding, regularMono.respectsIso, AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso
|
RespectsLeft π | CompData | 7 mathmath: instRespectsLeftInd, AlgebraicGeometry.IsLocalAtSource.respectsLeft_isOpenImmersion, RespectsLeft.inf, AlgebraicGeometry.IsZariskiLocalAtSource.respectsLeft_isOpenImmersion, AlgebraicGeometry.sourceLocalClosure.instRespectsLeftSchemeOfIsStableUnderBaseChange, Respects.toRespectsLeft, instRespectsLeftOppositeOpOfRespectsRight
|
RespectsRight π | CompData | 4 mathmath: RespectsRight.inf, instRespectsRightOppositeOpOfRespectsLeft, AlgebraicGeometry.sourceLocalClosure.instRespectsRightScheme, Respects.toRespectsRight
|
arrow π | CompOp | 4 mathmath: CategoryTheory.LocalizerMorphism.hasRightResolutions_arrow_of_functorial_resolutions, CategoryTheory.LocalizerMorphism.arrow_functor, HomotopicalAlgebra.FibrantObject.instHasRightResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.instHasLeftResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism
|
epimorphisms π | CompOp | 15 mathmath: IsStableUnderCobaseChange.hasOfPrecompProperty_epimorphisms, CategoryTheory.projective_iff_llp_epimorphisms_of_isZero, CategoryTheory.Abelian.instIsStableUnderBaseChangeEpimorphisms, CategoryTheory.projective_iff_llp_epimorphisms_zero, IsStableUnderRetracts.epimorphisms, epimorphisms.iff, CategoryTheory.ObjectProperty.epimorphisms_le_epiModSerre, functorCategory_epimorphisms, CategoryTheory.ConcreteCategory.surjective_eq_epimorphisms_iff, RespectsIso.epimorphisms, CategoryTheory.ConcreteCategory.surjective_eq_epimorphisms, IsStableUnderCobaseChange.epimorphisms, epimorphisms.infer_property, IsMultiplicative.instEpimorphisms, CategoryTheory.ConcreteCategory.surjective_le_epimorphisms
|
functorCategory π | CompOp | 15 mathmath: instIsStableUnderTransfiniteCompositionOfShapeFunctorFunctorCategoryOfHasIterationOfShape, CategoryTheory.Functor.IsLocalization.instDiscreteObjWhiskeringRightFunctorCategoryOfFiniteOfContainsIdentities, functorCategory_isomorphisms, IsStableUnderColimitsOfShape.functorCategory, instHasFunctorialFactorizationFunctorFunctorCategory, CategoryTheory.SmallObject.succStruct_prop_le_propArrow, functorCategory_monomorphisms, functorCategory_epimorphisms, instIsStableUnderBaseChangeFunctorFunctorCategoryOfHasPullbacks, IsStableUnderLimitsOfShape.functorCategory, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_unit, CategoryTheory.Localization.HasProductsOfShapeAux.inverts, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_counit, instIsStableUnderRetractsFunctorFunctorCategory, instIsStableUnderCobaseChangeFunctorFunctorCategoryOfHasPushouts
|
homFamily π | CompOp | 11 mathmath: CategoryTheory.SmallObject.ΞΉFunctorObj_eq, ofHoms_homFamily, homFamily_arrow_mk, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.SmallObject.ΟFunctorObj_eq, IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, homFamily_apply
|
instCompleteBooleanAlgebra π | CompOp | 282 mathmath: AlgebraicGeometry.descendsAlong_isOpenImmersion_surjective_inf_flat_inf_quasicompact', homotopyEquivalences_le_quasiIso, SimplexCategoryGenRel.multiplicativeClosure_isGenerator_eq_top, AlgebraicGeometry.descendsAlong_universallyClosed_surjective_inf_flat_inf_quasicompact, isomorphisms_le_of_containsIdentities, comp_eq_top_iff, isStableUnderLimitsOfShape_iff_limitsOfShape_le, hasOfPostcompProperty_iff_le_diagonal, universally_inf, SSet.modelCategoryQuillen.I_le_monomorphisms, AlgebraicGeometry.HasAffineProperty.affineAnd_le_affineAnd, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W, DescendsAlong.top, Over.hasPullbacks, HasCardinalLT.iSup, Over.instHasTerminalTopOfContainsIdentities, ContainsIdentities.inf, Over.map_obj_left, Over.pullbackComp_hom_app_left, pushouts_le, Under.mk_hom, CategoryTheory.Localization.LeftBousfield.galoisConnection, CategoryTheory.ObjectProperty.isomorphisms_le_isoModSerre, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, AlgebraicGeometry.isImmersion_eq_inf, colimitsOfShape_le_coproducts, IsInvertedBy.iff_map_le_isomorphisms, AlgebraicGeometry.descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact, Over.mapCongr_inv_app_left, monotone_map, transfiniteCompositionsOfShape_le_transfiniteCompositions, AlgebraicGeometry.IsSeparated.eq_valuativeCriterion, AlgebraicGeometry.IsClosedImmersion.eq_proper_inf_monomorphisms, IsMultiplicative.instTop, Over.pullbackMapHomPullback_app, IsMultiplicative.inf, colimitsOfShape_le, IsLocalAtSource.inf, Over.mk_hom, Over.pullback_obj_left, Over.map_map_left, SSet.Truncated.HomotopyCategory.multiplicativeClosure_morphismPropertyHomMk, CategoryTheory.IsGrothendieckAbelian.isomorphisms_le_pushouts_generatingMonomorphisms, transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ΞΉ_transitionMap, coproducts_monotone, CategoryTheory.Localization.Construction.morphismProperty_eq_top', Over.Hom.ext_iff, HomotopicalAlgebra.trivialCofibrations_sub_cofibrations, colimitsOfShape_discrete_le_llp_rlp, Over.pullbackCongr_hom_app_left_fst, Over.mapPullbackAdj_counit_app, isStableUnderRetracts_iff_retracts_le, multiplicativeClosure_monotone, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, CategoryTheory.Functor.relativelyRepresentable.isomorphisms_le, DescendsAlong.inf, CodescendsAlong.inf, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_pt, retracts_le, instRespectsIsoTop, IsStableUnderBaseChange.inf, instFaithfulOverTopOverForget, IsLocalAtSource.top, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, Over.map_comp, AlgebraicGeometry.instDescendsAlongSchemeMinMorphismPropertySurjectiveFlatLocallyOfFinitePresentationOfQuasiCompactOfIsZariskiLocalAtTarget, Comma.instFullTopCommaForget, HomotopicalAlgebra.trivialCofibrations_sub_weakEquivalences, AlgebraicGeometry.HasAffineProperty.affineAnd_eq_of_propertyIsLocal, CategoryTheory.Localization.LeftBousfield.le_W_iff, le_ind, AlgebraicGeometry.Etale.instHasOfPostcompPropertySchemeMinMorphismPropertyLocallyOfFiniteTypeFormallyUnramified, transfiniteCompositionsOfShape_le, HomotopicalAlgebra.trivialFibrations_sub_fibrations, AlgebraicGeometry.IsFinite.eq_proper_inf_locallyQuasiFinite, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_le_monomorphisms, Over.instPreservesFiniteLimitsTopPullback, CategoryTheory.Cat.FreeRefl.multiplicativeClosure_morphismPropertyHomMk, transfiniteCompositionsOfShape_monotone, isStableUnderCobaseChange_iff_pushouts_le, Over.mapPullbackAdj_unit_app, universally_le, CategoryTheory.GrothendieckTopology.PreservesSheafification.le, AlgebraicGeometry.IsLocalIso.eq_iInf, AlgebraicGeometry.topologically_iso_le, Over.mapId_inv_app_left, SSet.Truncated.liftOfStrictSegal.naturalityProperty_eq_top, AlgebraicGeometry.instHasOfPostcompPropertySchemeQuasiSeparatedTopMorphismProperty, le_pushouts, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.iSup_W, Over.mapCongr_hom_app_left, IsLocalAtTarget.top, strictMap_multiplicativeClosure_le, CategoryTheory.SmallObject.succStruct_prop_le_propArrow, isoClosure_le_iff, instIsStableUnderCobaseChangeTop, Over.forget_comp_forget_map, Over.pullbackComp_inv_app_left, coproducts_le_iff, instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ΞΉ_app, CategoryTheory.ObjectProperty.galoisConnection_isColocal, map_inverseImage_le, le_isLocal_isLocal, gc_llp_rlp, SimplexCategory.Truncated.morphismProperty_eq_top, HomotopicalAlgebra.trivialFibrations_sub_weakEquivalences, instHasOfPrecompPropertyTop, HasCardinalLT.sup, instIsStableUnderRetractsMin, retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp, iSup_iff, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, map_le_iff, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, CategoryTheory.ObjectProperty.le_isLocal_iff, le_coproducts, RespectsLeft.inf, instFullUnderTopUnderForget, CategoryTheory.Paths.morphismProperty_eq_top', CategoryTheory.Localization.Construction.morphismProperty_is_top', instIsLeftAdjointOverTopMapOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, Over.mapComp_hom_app_left, le_pullbacks, CategoryTheory.ObjectProperty.epimorphisms_le_epiModSerre, antitone_rlp, bijective_eq_sup, IsStableUnderTransfiniteCompositionOfShape.le, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ΞΉ_transitionMap_assoc, instIsStableUnderBaseChangeTop, Over.w_assoc, le_llp_rlp, AlgebraicGeometry.HasRingHomProperty.inf, CategoryTheory.Localization.Construction.morphismProperty_eq_top, instHasOfPostcompPropertyTop, le_llp_iff_le_rlp, coproducts_le, CategoryTheory.ObjectProperty.le_isColocal_iff, instFaithfulCostructuredArrowTopOverToOver, AlgebraicGeometry.isOpenImmersion_eq_inf, CostructuredArrow.toOver_map, AlgebraicGeometry.instHasCoproductsOfShapeOverSchemeTopMorphismPropertyOfSmall, le_retracts, instHasOfPrecompPropertyMin, AlgebraicGeometry.IsClosedImmersion.eq_inf, CategoryTheory.ObjectProperty.monomorphisms_le_monoModSerre, CostructuredArrow.toOver_obj, Under.w, pretopology_inf, AlgebraicGeometry.targetAffineLocally_affineAnd_eq_affineLocally, inf, RespectsRight.inf, coproducts_le_llp_rlp, Over.mk_left, AlgebraicGeometry.isPreimmersion_eq_inf, CostructuredArrow.mk_left, AlgebraicGeometry.isProper_eq, Under.Hom.ext_iff, limitsOfShape_le, Under.mk_left, retracts_le_iff, AlgebraicGeometry.universallyClosed_eq_universallySpecializing, transfiniteCompositionsOfShape_le_llp_rlp, Over.instPreservesFiniteLimitsTopOverForget, AlgebraicGeometry.Flat.surjective_descendsAlong_surjective_inf_flat_inf_quasicompact, retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, AlgebraicGeometry.IsProper.eq_valuativeCriterion, Under.forget_comp_forget_map, IsInvertedBy.iff_le_inverseImage_isomorphisms, AlgebraicGeometry.IsClosedImmersion.eq_isFinite_inf_mono, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, instFullOverTopOverForget, isomorphisms_le_pushouts, Comma.hasColimitsOfShape_of_closedUnderColimitsOfShape, Over.w, IsStableUnderComposition.inf, AlgebraicGeometry.UniversallyClosed.eq_valuativeCriterion, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, le_leftBousfieldW_isLocal, AlgebraicGeometry.Scheme.instLocallyCoverDenseOverTopMorphismPropertyOverForgetOverGrothendieckTopology, CodescendsAlong.top, colimitsOfShape_le_of_final, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, CategoryTheory.LocalizerMorphism.map, AlgebraicGeometry.isomorphisms_eq_isOpenImmersion_inf_surjective, instHasOfPostcompPropertyMin, CategoryTheory.Cat.FreeRefl.morphismProperty_eq_top, CategoryTheory.Paths.morphismProperty_eq_top_of_isMultiplicative, transfiniteCompositions_le, AlgebraicGeometry.instHasOfPostcompPropertySchemeIsSeparatedTopMorphismProperty, Comma.hasColimit_of_closedUnderColimitsOfShape, AlgebraicGeometry.geometrically_inf, CostructuredArrow.Hom.ext_iff, AlgebraicGeometry.IsImmersion.instHasOfPostcompPropertySchemeTopMorphismProperty, retracts_le_llp_rlp, AlgebraicGeometry.Scheme.smallGrothendieckTopology_eq_toGrothendieck_smallPretopology, Over.pullback_map_left, AlgebraicGeometry.IsFinite.eq_isProper_inf_isAffineHom, antitone_llp, AlgebraicGeometry.targetAffineLocally_affineAnd_le, sSup_iff, AlgebraicGeometry.instIsLocallyDirectedCompSchemeOverOverTopMorphismPropertyForgetForgetForget, SSet.modelCategoryQuillen.J_le_monomorphisms, isStableUnderTransfiniteCompositionOfShape_iff, Over.pullback_obj_hom, CategoryTheory.FreeGroupoid.instIsLocalizationOfTopMorphismProperty, instHasTwoOutOfThreePropertyTop, le_isColocal_isColocal, Over.mapComp_inv_app_left, CategoryTheory.Localization.morphismProperty_eq_top, Under.w_assoc, instFullCostructuredArrowTopOverToOver, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, map_top_eq_top_of_essSurj_of_full, instHasTwoOutOfThreePropertyMin, instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, precoverage_inf, AlgebraicGeometry.HasAffineProperty.affineAnd_le_isAffineHom, IsStableUnderCobaseChange.inf, monotone_isoClosure, AlgebraicGeometry.isomorphisms_eq_stalkwise, transfiniteCompositions_pushouts_coproducts_le_llp_rlp, AlgebraicGeometry.IsOpenImmersion.le_monomorphisms, le_def, AlgebraicGeometry.IsFinite.eq_inf, pushouts_le_llp_rlp, AlgebraicGeometry.affineLocally_le, AlgebraicGeometry.GeometricallyIntegral.eq_geometricallyReduced_inf_geometricallyIrreducible, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W, isStableUnderColimitsOfShape_iff_colimitsOfShape_le, toSet_max, le_isoClosure, CategoryTheory.ObjectProperty.galoisConnection_isLocal, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, pullbacks_monotone, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, universally_mono, presheaf_monomorphisms_le_monomorphisms, pushouts_le_iff, isStableUnderBaseChange_iff_pullbacks_le, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W, AlgebraicGeometry.IsIntegralHom.eq_universallyClosed_inf_isAffineHom, pullbacks_le, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.ConcreteCategory.injective_le_monomorphisms, pushouts_monotone, le_colimitsOfShape_punit, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, retracts_monotone, Over.mapId_hom_app_left, Over.pullbackComp_left_fst_fst, CategoryTheory.ConcreteCategory.surjective_le_epimorphisms, IsLocalAtTarget.inf, Comma.hasLimitsOfShape_of_closedUnderLimitsOfShape, CategoryTheory.isGroupoid_iff_isomorphisms_eq_top, le_multiplicativeClosure, CategoryTheory.Localization.instIsGroupoidLocalizationTopMorphismProperty, top_apply, AlgebraicGeometry.instHasFiniteCoproductsOverSchemeTopMorphismProperty, CategoryTheory.Localization.Construction.morphismProperty_is_top, AlgebraicGeometry.ValuativeCriterion.eq, SSet.Truncated.HomotopyCategory.morphismProperty_eq_top, transfiniteCompositions_monotone, top_eq, Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.sup_W, transfiniteCompositions_le_llp_rlp, AlgebraicGeometry.descendsAlong_universallyOpen_surjective_inf_flat_inf_quasicompact, CostructuredArrow.mk_hom, CategoryTheory.Paths.morphismProperty_eq_top, Comma.hasLimit_of_closedUnderLimitsOfShape, AlgebraicGeometry.sourceLocalClosure.le, Over.map_obj_hom, AlgebraicGeometry.descendsAlong_universallyInjective_surjective_inf_flat_inf_quasicompact, instFaithfulUnderTopUnderForget, multiplicativeClosure_le_iff, le_transfiniteCompositions, toSet_iSup, transfiniteCompositions_le_iff, SimplexCategory.morphismProperty_eq_top
|
instInhabited π | CompOp | β |
inverseImage π | CompOp | 40 mathmath: inverseImage_equivalence_inverse_eq_map_functor, over_eq_inverseImage, CategoryTheory.Adjunction.hasLeftCalculusOfFractions', instIsMonoidalInverseImageOfMonoidalOfRespectsIso, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms, IsMultiplicative.instInverseImage, CategoryTheory.ObjectProperty.isColocal_eq_inverseImage_isomorphisms, IsStableUnderComposition.inverseImage, CategoryTheory.Adjunction.isLocalization_rightAdjoint', CategoryTheory.Localization.LeftBousfield.W_eq_inverseImage_isomorphisms, inverseImage_map_eq_of_isEquivalence, CategoryTheory.Adjunction.isLocalization_leftAdjoint', CategoryTheory.GrothendieckTopology.PreservesSheafification.le, under_eq_inverseImage, CategoryTheory.Adjunction.isLocalization, CategoryTheory.GrothendieckTopology.W_inverseImage_whiskeringLeft, map_inverseImage_le, comap_precoverage, eq_inverseImage_quotientFunctor, instIsStableUnderRetractsInverseImage, map_le_iff, op_inverseImage, CategoryTheory.Adjunction.isLocalization', IsInvertedBy.iff_le_inverseImage_isomorphisms, CategoryTheory.LocalizerMorphism.map, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_unit, ContainsIdentities.inverseImage, IsCompatibleWithShift.condition, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction, inverseImage_iff, TransfiniteCompositionOfShape.map_toTransfiniteCompositionOfShape, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_counit, CategoryTheory.Abelian.isoModSerre_kernel_eq_inverseImage_isomorphisms, CategoryTheory.Adjunction.hasRightCalculusOfFractions', inverseImage_equivalence_functor_eq_map_inverse, AlgebraicGeometry.isomorphisms_eq_stalkwise, RespectsIso.inverseImage, map_inverseImage_eq_of_isEquivalence, CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms, instHasTwoOutOfThreePropertyInverseImage
|
isoClosure π | CompOp | 11 mathmath: map_isoClosure, isoClosure_le_iff, map_inverseImage_le, isoClosure_eq_iff, IsInvertedBy.isoClosure_iff, isoClosure_isoClosure, monotone_isoClosure, le_isoClosure, isoClosure_respectsIso, isoClosure_eq_self, map_id_eq_isoClosure
|
isomorphisms π | CompOp | 53 mathmath: CategoryTheory.ObjectProperty.InheritedFromSource.instIsomorphismsOfIsClosedUnderIsomorphisms, CategoryTheory.Adjunction.hasLeftCalculusOfFractions', isomorphisms_le_of_containsIdentities, IsLocalAtTarget.toRespects, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms, IsStableUnderCobaseChange.isomorphisms, CategoryTheory.ObjectProperty.isomorphisms_le_isoModSerre, isomorphisms.iff, IsInvertedBy.iff_map_le_isomorphisms, AlgebraicGeometry.descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact, IsStableUnderBaseChange.isomorphisms, CategoryTheory.ObjectProperty.isColocal_eq_inverseImage_isomorphisms, functorCategory_isomorphisms, CategoryTheory.IsGrothendieckAbelian.isomorphisms_le_pushouts_generatingMonomorphisms, CategoryTheory.Adjunction.isLocalization_rightAdjoint', CategoryTheory.Localization.LeftBousfield.W_eq_inverseImage_isomorphisms, op_isomorphisms, CategoryTheory.Functor.relativelyRepresentable.isomorphisms_le, CategoryTheory.Adjunction.isLocalization_leftAdjoint', AlgebraicGeometry.topologically_iso_le, TransfiniteCompositionOfShape.instIsIsoAppIncl, CategoryTheory.Adjunction.isLocalization, instHasTwoOutOfThreePropertyIsomorphisms, IsStableUnderColimitsOfShape.isomorphisms, CategoryTheory.ObjectProperty.InheritedFromTarget.instIsomorphismsOfIsClosedUnderIsomorphisms, instIsStableUnderFilteredColimitsIsomorphisms, TransfiniteCompositionOfShape.instIsIsoMapF, RespectsIso.isomorphisms, CategoryTheory.Adjunction.isLocalization', CategoryTheory.Precoverage.ZeroHypercover.instIsLocalAtTargetIsomorphisms, isomorphisms.infer_property, IsStableUnderRetracts.isomorphisms, IsInvertedBy.iff_le_inverseImage_isomorphisms, isomorphisms_le_pushouts, AlgebraicGeometry.isomorphisms_eq_isOpenImmersion_inf_surjective, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_unit, instHasOfPostcompPropertyIsomorphismsOfRespectsIso, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ΞΉIteration_app_right, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_counit, AlgebraicGeometry.Scheme.instIsLocalAtTargetIsomorphismsZariskiPrecoverage, CategoryTheory.Abelian.isoModSerre_kernel_eq_inverseImage_isomorphisms, CategoryTheory.Adjunction.hasRightCalculusOfFractions', AlgebraicGeometry.instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop, diagonal_isomorphisms, instHasOfPrecompPropertyIsomorphismsOfRespectsIso, AlgebraicGeometry.isomorphisms_eq_stalkwise, IsMultiplicative.instIsomorphisms, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ΞΉIteration_app_right_assoc, IsLocalAtSource.toRespects, CategoryTheory.isGroupoid_iff_isomorphisms_eq_top, CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms, isomorphisms_op
|
map π | CompOp | 18 mathmath: inverseImage_equivalence_inverse_eq_map_functor, map_id, IsInvertedBy.iff_map_le_isomorphisms, monotone_map, map_map, inverseImage_map_eq_of_isEquivalence, map_isoClosure, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, map_eq_of_iso, map_inverseImage_le, map_le_iff, map_respectsIso, inverseImage_equivalence_functor_eq_map_inverse, map_top_eq_top_of_essSurj_of_full, map_mem_map, map_id_eq_isoClosure, IsInvertedBy.map_iff, map_inverseImage_eq_of_isEquivalence
|
monomorphisms π | CompOp | 44 mathmath: CategoryTheory.IsGrothendieckAbelian.instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp, instIsStableUnderTransfiniteCompositionOfShapeFunctorMonomorphismsOfHasPullbacksOfHasIterationOfShape, SSet.modelCategoryQuillen.I_le_monomorphisms, AlgebraicGeometry.instIsZariskiLocalAtTargetMonomorphismsScheme, SSet.instIsStableUnderFilteredColimitsMonomorphisms, AlgebraicGeometry.IsClosedImmersion.eq_proper_inf_monomorphisms, SSet.modelCategoryQuillen.cofibrations_eq, RespectsIso.monomorphisms, CategoryTheory.IsGrothendieckAbelian.instIsStableUnderTransfiniteCompositionMonomorphisms, instIsStableUnderCoproductsMonomorphismsOfAB4OfSize, CategoryTheory.Types.instIsStableUnderCobaseChangeMonomorphismsType, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_le_monomorphisms, CategoryTheory.ConcreteCategory.injective_eq_monomorphisms, SSet.instIsStableUnderCoproductsMonomorphismsOfHasCoproductsType, monomorphisms.iff, isStableUnderColimitsOfShape_monomorphisms, SSet.instIsStableUnderCobaseChangeMonomorphisms, CategoryTheory.ConcreteCategory.injective_eq_monomorphisms_iff, instIsStableUnderCoproductsOfShapeFunctorMonomorphismsOfHasCoproductsOfShapeOfHasPullbacks, CategoryTheory.Abelian.instIsStableUnderCobaseChangeMonomorphisms, CategoryTheory.Types.instIsStableUnderFilteredColimitsMonomorphismsType, functorCategory_monomorphisms, CategoryTheory.IsGrothendieckAbelian.llp_rlp_monomorphisms, CategoryTheory.ObjectProperty.monomorphisms_le_monoModSerre, instIsStableUnderFilteredColimitsMonomorphismsOfAB5OfSize, CategoryTheory.Types.instIsStableUnderCoproductsOfShapeMonomorphismsType, IsStableUnderBaseChange.hasOfPostcompProperty_monomorphisms, CategoryTheory.injective_iff_rlp_monomorphisms_of_isZero, AlgebraicGeometry.IsClosedImmersion.eq_isFinite_inf_mono, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_rlp, monomorphisms.infer_property, SSet.modelCategoryQuillen.J_le_monomorphisms, IsStableUnderBaseChange.monomorphisms, instIsStableUnderCoproductsFunctorMonomorphismsOfHasCoproductsOfHasPullbacks, CategoryTheory.IsGrothendieckAbelian.instHasFunctorialFactorizationMonomorphismsRlp, diagonal_isomorphisms, AlgebraicGeometry.IsOpenImmersion.le_monomorphisms, presheaf_monomorphisms_le_monomorphisms, IsStableUnderRetracts.monomorphisms, CategoryTheory.Types.instIsStableUnderCoproductsMonomorphismsType, CategoryTheory.ConcreteCategory.injective_le_monomorphisms, CategoryTheory.injective_iff_rlp_monomorphisms_zero, IsMultiplicative.instMonomorphisms
|
ofHoms π | CompData | 13 mathmath: ofHoms_iff, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W, isSmall_iff_eq_ofHoms, HomotopicalAlgebra.AttachCells.pushouts_coproducts, ofHoms_homFamily, HomotopicalAlgebra.nonempty_attachCells_iff, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.single_W, hasCardinalLT_ofHoms, isSmall_ofHoms, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W, HomotopicalAlgebra.RelativeCellComplex.transfiniteCompositionOfShape_toTransfiniteCompositionOfShape, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ_W
|
op π | CompOp | 74 mathmath: CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_map_f, CategoryTheory.Localization.isLocalization_op, instHasOfPrecompPropertyOppositeOpOfHasOfPostcompProperty, IsStableUnderCobaseChange.op, LeftFraction.op_map, LeftFraction.op_X', HomotopicalAlgebra.weakEquivalences_op, CategoryTheory.LocalizerMorphism.hasLeftResolutions_iff_op, CategoryTheory.LocalizerMorphism.RightResolution.op_Xβ, instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions, CategoryTheory.LocalizerMorphism.LeftResolution.unop_Xβ, op_isomorphisms, CategoryTheory.LocalizerMorphism.RightResolution.unop_Xβ, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_unitIso, CategoryTheory.LocalizerMorphism.instHasLeftResolutionsOppositeOpOpOfHasRightResolutions, RespectsIso.op, CategoryTheory.LocalizerMorphism.nonempty_rightResolution_iff_op, IsStableUnderComposition.op, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, instHasFactorizationOppositeOp, CategoryTheory.ObjectProperty.InheritedFromTarget.op, HomotopicalAlgebra.cofibrations_op, MapFactorizationData.op_Z, CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_obj, CategoryTheory.LocalizerMorphism.LeftResolution.unop_w, RightFractionRel.op, instHasTwoOutOfThreePropertyOppositeOp, IsStableUnderBaseChange.op, CategoryTheory.LocalizerMorphism.instIsLocalizedEquivalenceOppositeOpOp, instHasOfPostcompPropertyOppositeOpOfHasOfPrecompProperty, LeftFraction.op_f, CategoryTheory.Functor.op_iff, IsMultiplicative.op, LeftFraction.op_s, IsInvertedBy.leftOp, MapFactorizationData.op_i, CategoryTheory.Functor.IsLocalization.op_iff, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_obj, rightFractionRel_op_iff, HomotopicalAlgebra.trivialCofibrations_op, op_inverseImage, RightFraction.op_f, RightFraction.op_map, IsInvertedBy.op, CategoryTheory.LocalizerMorphism.op_functor, CategoryTheory.LocalizerMorphism.nonempty_leftResolution_iff_op, ContainsIdentities.op, CategoryTheory.LocalizerMorphism.RightResolution.unop_w, HomotopicalAlgebra.fibrations_op, CategoryTheory.LocalizerMorphism.LeftResolution.op_w, CategoryTheory.ObjectProperty.InheritedFromSource.op, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_map_f, instRespectsLeftOppositeOpOfRespectsRight, op_unop, leftFractionRel_op_iff, StableUnderInverse.op, instRespectsRightOppositeOpOfRespectsLeft, instHasRightCalculusOfFractionsOppositeOpOfHasLeftCalculusOfFractions, CategoryTheory.LocalizerMorphism.LeftResolution.op_Xβ, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso, CategoryTheory.LocalizerMorphism.RightResolution.op_w, instIsStableUnderRetractsOppositeOp, LeftFractionRel.op, HomotopicalAlgebra.trivialFibrations_op, CategoryTheory.LocalizerMorphism.hasRightResolutions_iff_op, CategoryTheory.Functor.IsLocalization.op, RightFraction.op_s, MapFactorizationData.op_p, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_functor, CategoryTheory.LocalizerMorphism.instHasRightResolutionsOppositeOpOpOfHasLeftResolutions, RightFraction.op_Y', isomorphisms_op, unop_op, CategoryTheory.LocalizerMorphism.isLeftDerivabilityStructure_iff_op
|
pi π | CompOp | 3 mathmath: IsInvertedBy.pi, Pi.containsIdentities, CategoryTheory.Functor.IsLocalization.pi
|
prod π | CompOp | 4 mathmath: CategoryTheory.Localization.Construction.prodIsLocalization, CategoryTheory.Functor.IsLocalization.prod, Prod.containsIdentities, IsInvertedBy.prod
|
strictMap π | CompData | 3 mathmath: map_mem_strictMap, strictMap_multiplicativeClosure_le, SSet.Truncated.HomotopyCategory.morphismPropertyHomMk_eq_strictMap
|
toSet π | CompOp | 21 mathmath: CategoryTheory.OrthogonalReflection.Dβ.ΞΉ_comp_t_assoc, arrow_mk_mem_toSet_iff, CategoryTheory.SmallObject.ΞΉFunctorObj_eq, ofHoms_homFamily, CategoryTheory.OrthogonalReflection.Dβ.multispanIndex_left, homFamily_arrow_mk, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, mem_toSet_iff, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.SmallObject.ΟFunctorObj_eq, CategoryTheory.OrthogonalReflection.Dβ.ΞΉ_comp_t, IsSmall.small_toSet, CategoryTheory.OrthogonalReflection.Dβ.multispanIndex_fst, IsCardinalForSmallObjectArgument.preservesColimit, toSet_max, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, homFamily_apply, CategoryTheory.OrthogonalReflection.Dβ.multispanIndex_snd, toSet_iSup
|
unop π | CompOp | 29 mathmath: LeftFractionRel.unop, instHasLeftCalculusOfFractionsUnopOfHasRightCalculusOfFractionsOpposite, IsStableUnderComposition.unop, RespectsIso.unop, RightFractionRel.unop, LeftFraction.unop_X', instHasTwoOutOfThreePropertyUnopOfOpposite, RightFraction.unop_s, ContainsIdentities.unop, instIsStableUnderRetractsUnopOfOpposite, IsStableUnderBaseChange.unop, LeftFraction.unop_f, HomotopicalAlgebra.fibrations_eq_unop, instHasOfPostcompPropertyUnopOfHasOfPrecompPropertyOpposite, LeftFraction.unop_s, instHasOfPrecompPropertyUnopOfHasOfPostcompPropertyOpposite, HomotopicalAlgebra.cofibrations_eq_unop, HomotopicalAlgebra.trivialFibrations_eq_unop, CategoryTheory.Functor.IsLocalization.unop, instHasRightCalculusOfFractionsUnopOfHasLeftCalculusOfFractionsOpposite, RightFraction.unop_f, HomotopicalAlgebra.trivialCofibrations_eq_unop, op_unop, HomotopicalAlgebra.weakEquivalences_eq_unop, IsStableUnderCobaseChange.unop, StableUnderInverse.unop, IsMultiplicative.unop, RightFraction.unop_Y', unop_op
|