Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/MorphismProperty/Basic.lean

Statistics

MetricCount
DefinitionsRespects, RespectsIso, RespectsLeft, RespectsRight, arrow, epimorphisms, functorCategory, homFamily, instCompleteBooleanAlgebra, instInhabited, inverseImage, isoClosure, isomorphisms, map, monomorphisms, ofHoms, op, pi, prod, strictMap, toSet, unop
22
TheoremstoRespectsLeft, toRespectsRight, epimorphisms, inverseImage, isomorphisms, mk, monomorphisms, of_respects_arrow_iso, op, postcomp, precomp, unop, inf, precomp, inf, postcomp, arrow_iso_iff, arrow_mk_iso_iff, arrow_mk_mem_toSet_iff, cancel_left_of_respectsIso, cancel_right_of_respectsIso, comma_iso_iff, iff, infer_property, ext, ext_iff, homFamily_apply, homFamily_arrow_mk, iSup_iff, inf, instRespectsIsoTop, instRespectsLeftOppositeOpOfRespectsRight, instRespectsOfRespectsLeftOfRespectsRight, instRespectsRightOppositeOpOfRespectsLeft, inverseImage_equivalence_functor_eq_map_inverse, inverseImage_equivalence_inverse_eq_map_functor, inverseImage_iff, inverseImage_map_eq_of_isEquivalence, isoClosure_eq_iff, isoClosure_eq_self, isoClosure_isoClosure, isoClosure_le_iff, isoClosure_respectsIso, iff, infer_property, isomorphisms_op, le_def, le_isoClosure, map_eq_of_iso, map_id, map_id_eq_isoClosure, map_inverseImage_eq_of_isEquivalence, map_inverseImage_le, map_isoClosure, map_le_iff, map_map, map_mem_map, map_mem_strictMap, map_respectsIso, map_top_eq_top_of_essSurj_of_full, mem_toSet_iff, iff, infer_property, monotone_isoClosure, monotone_map, ofHoms_homFamily, ofHoms_iff, of_eq, of_eq_top, op_inverseImage, op_isomorphisms, op_unop, sSup_iff, toSet_iSup, toSet_max, top_apply, top_eq, unop_op, isIso_app_iff_of_iso
79
Total101

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
Respects πŸ“–CompData
7 mathmath: IsLocalAtTarget.toRespects, instRespectsOfRespectsLeftOfRespectsRight, AlgebraicGeometry.HasRingHomProperty.respects_isOpenImmersion, AlgebraicGeometry.instRespectsSchemeLocallyQuasiFiniteIsOpenImmersion, instRespectsOfIsStableUnderComposition, AlgebraicGeometry.instRespectsSchemeSmoothIsOpenImmersion, IsLocalAtSource.toRespects
RespectsIso πŸ“–MathDef
71 mathmath: instRespectsIsoInd, relative_respectsIso, AlgebraicGeometry.IsDominant.respectsIso, CategoryTheory.ObjectProperty.instRespectsIsoIsColocal, HomotopyCategory.respectsIso_quasiIso, AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.respectsIso, instRespectsIsoPullbacks, AlgebraicGeometry.affineAnd_respectsIso, RespectsIso.unop, RespectsIso.monomorphisms, TopCat.instRespectsIsoIsOpenEmbedding, RespectsIso.op, CategoryTheory.Functor.relativelyRepresentable.respectsIso, HomologicalComplex.instRespectsIsoQuasiIso, instRespectsIsoTop, AlgebraicGeometry.IsClosedImmersion.respectsIso, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenEmbedding, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedEmbedding, AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_mk, RespectsIso.diagonal, AlgebraicGeometry.affineLocally_respectsIso, AlgebraicGeometry.specializingMap_respectsIso, HomotopicalAlgebra.instRespectsIsoWeakEquivalencesOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsOfIsStableUnderComposition, AlgebraicGeometry.sourceLocalClosure.instRespectsIsoScheme, bijective_respectsIso, AlgebraicGeometry.instRespectsIsoSchemeSurjective, instRespectsIsoColimitsOfShape, RespectsIso.of_respects_arrow_iso, AlgebraicGeometry.UniversallyInjective.respectsIso, AlgebraicGeometry.stalkwise_respectsIso, AlgebraicGeometry.isOpenImmersion_respectsIso, RespectsIso.mk, isoClosure_eq_iff, instRespectsIsoTransfiniteCompositionsOfShape, map_respectsIso, IsStableUnderBaseChange.respectsIso, CategoryTheory.ObjectProperty.instRespectsIsoTrW, AlgebraicGeometry.sourceAffineLocally_respectsIso, AlgebraicGeometry.HasAffineProperty.instRespectsIsoScheme, inf, injective_respectsIso, RespectsIso.isomorphisms, IsStableUnderCobaseChange.respectsIso, CategoryTheory.NatTrans.instRespectsIsoFunctorCoequifibered, AlgebraicGeometry.topologically_respectsIso, RespectsIso.epimorphisms, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyInjective, RingHom.toMorphismProperty_respectsIso_iff, AlgebraicGeometry.instRespectsIsoSchemeTargetAffineLocallyOfToProperty, universally_respectsIso, surjective_respectsIso, respectsIso_of_isStableUnderComposition, instRespectsIsoPushouts, instRespectsIsoLimitsOfShape, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedMap, regularEpi.respectsIso, AlgebraicGeometry.IsSeparated.instRespectsIsoScheme, AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_of, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyGeneralizingMap, instRespectsIsoOfIsStableUnderRetracts, RespectsIso.inverseImage, isoClosure_respectsIso, CategoryTheory.ObjectProperty.instRespectsIsoIsLocal, AlgebraicGeometry.universallyClosed_respectsIso, AlgebraicGeometry.UniversallyOpen.instRespectsIsoScheme, CategoryTheory.NatTrans.instRespectsIsoFunctorEquifibered, AlgebraicGeometry.IsProper.instRespectsIsoScheme, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenMap, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsEmbedding, regularMono.respectsIso, AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso
RespectsLeft πŸ“–CompData
7 mathmath: instRespectsLeftInd, AlgebraicGeometry.IsLocalAtSource.respectsLeft_isOpenImmersion, RespectsLeft.inf, AlgebraicGeometry.IsZariskiLocalAtSource.respectsLeft_isOpenImmersion, AlgebraicGeometry.sourceLocalClosure.instRespectsLeftSchemeOfIsStableUnderBaseChange, Respects.toRespectsLeft, instRespectsLeftOppositeOpOfRespectsRight
RespectsRight πŸ“–CompData
4 mathmath: RespectsRight.inf, instRespectsRightOppositeOpOfRespectsLeft, AlgebraicGeometry.sourceLocalClosure.instRespectsRightScheme, Respects.toRespectsRight
arrow πŸ“–CompOp
4 mathmath: CategoryTheory.LocalizerMorphism.hasRightResolutions_arrow_of_functorial_resolutions, CategoryTheory.LocalizerMorphism.arrow_functor, HomotopicalAlgebra.FibrantObject.instHasRightResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.instHasLeftResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism
epimorphisms πŸ“–CompOp
15 mathmath: IsStableUnderCobaseChange.hasOfPrecompProperty_epimorphisms, CategoryTheory.projective_iff_llp_epimorphisms_of_isZero, CategoryTheory.Abelian.instIsStableUnderBaseChangeEpimorphisms, CategoryTheory.projective_iff_llp_epimorphisms_zero, IsStableUnderRetracts.epimorphisms, epimorphisms.iff, CategoryTheory.ObjectProperty.epimorphisms_le_epiModSerre, functorCategory_epimorphisms, CategoryTheory.ConcreteCategory.surjective_eq_epimorphisms_iff, RespectsIso.epimorphisms, CategoryTheory.ConcreteCategory.surjective_eq_epimorphisms, IsStableUnderCobaseChange.epimorphisms, epimorphisms.infer_property, IsMultiplicative.instEpimorphisms, CategoryTheory.ConcreteCategory.surjective_le_epimorphisms
functorCategory πŸ“–CompOp
15 mathmath: instIsStableUnderTransfiniteCompositionOfShapeFunctorFunctorCategoryOfHasIterationOfShape, CategoryTheory.Functor.IsLocalization.instDiscreteObjWhiskeringRightFunctorCategoryOfFiniteOfContainsIdentities, functorCategory_isomorphisms, IsStableUnderColimitsOfShape.functorCategory, instHasFunctorialFactorizationFunctorFunctorCategory, CategoryTheory.SmallObject.succStruct_prop_le_propArrow, functorCategory_monomorphisms, functorCategory_epimorphisms, instIsStableUnderBaseChangeFunctorFunctorCategoryOfHasPullbacks, IsStableUnderLimitsOfShape.functorCategory, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_unit, CategoryTheory.Localization.HasProductsOfShapeAux.inverts, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_counit, instIsStableUnderRetractsFunctorFunctorCategory, instIsStableUnderCobaseChangeFunctorFunctorCategoryOfHasPushouts
homFamily πŸ“–CompOp
11 mathmath: CategoryTheory.SmallObject.ΞΉFunctorObj_eq, ofHoms_homFamily, homFamily_arrow_mk, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.SmallObject.Ο€FunctorObj_eq, IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, homFamily_apply
instCompleteBooleanAlgebra πŸ“–CompOp
282 mathmath: AlgebraicGeometry.descendsAlong_isOpenImmersion_surjective_inf_flat_inf_quasicompact', homotopyEquivalences_le_quasiIso, SimplexCategoryGenRel.multiplicativeClosure_isGenerator_eq_top, AlgebraicGeometry.descendsAlong_universallyClosed_surjective_inf_flat_inf_quasicompact, isomorphisms_le_of_containsIdentities, comp_eq_top_iff, isStableUnderLimitsOfShape_iff_limitsOfShape_le, hasOfPostcompProperty_iff_le_diagonal, universally_inf, SSet.modelCategoryQuillen.I_le_monomorphisms, AlgebraicGeometry.HasAffineProperty.affineAnd_le_affineAnd, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₁_W, DescendsAlong.top, Over.hasPullbacks, HasCardinalLT.iSup, Over.instHasTerminalTopOfContainsIdentities, ContainsIdentities.inf, Over.map_obj_left, Over.pullbackComp_hom_app_left, pushouts_le, Under.mk_hom, CategoryTheory.Localization.LeftBousfield.galoisConnection, CategoryTheory.ObjectProperty.isomorphisms_le_isoModSerre, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, AlgebraicGeometry.isImmersion_eq_inf, colimitsOfShape_le_coproducts, IsInvertedBy.iff_map_le_isomorphisms, AlgebraicGeometry.descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact, Over.mapCongr_inv_app_left, monotone_map, transfiniteCompositionsOfShape_le_transfiniteCompositions, AlgebraicGeometry.IsSeparated.eq_valuativeCriterion, AlgebraicGeometry.IsClosedImmersion.eq_proper_inf_monomorphisms, IsMultiplicative.instTop, Over.pullbackMapHomPullback_app, IsMultiplicative.inf, colimitsOfShape_le, IsLocalAtSource.inf, Over.mk_hom, Over.pullback_obj_left, Over.map_map_left, SSet.Truncated.HomotopyCategory.multiplicativeClosure_morphismPropertyHomMk, CategoryTheory.IsGrothendieckAbelian.isomorphisms_le_pushouts_generatingMonomorphisms, transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ΞΉ_transitionMap, coproducts_monotone, CategoryTheory.Localization.Construction.morphismProperty_eq_top', Over.Hom.ext_iff, HomotopicalAlgebra.trivialCofibrations_sub_cofibrations, colimitsOfShape_discrete_le_llp_rlp, Over.pullbackCongr_hom_app_left_fst, Over.mapPullbackAdj_counit_app, isStableUnderRetracts_iff_retracts_le, multiplicativeClosure_monotone, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, CategoryTheory.Functor.relativelyRepresentable.isomorphisms_le, DescendsAlong.inf, CodescendsAlong.inf, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_pt, retracts_le, instRespectsIsoTop, IsStableUnderBaseChange.inf, instFaithfulOverTopOverForget, IsLocalAtSource.top, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, Over.map_comp, AlgebraicGeometry.instDescendsAlongSchemeMinMorphismPropertySurjectiveFlatLocallyOfFinitePresentationOfQuasiCompactOfIsZariskiLocalAtTarget, Comma.instFullTopCommaForget, HomotopicalAlgebra.trivialCofibrations_sub_weakEquivalences, AlgebraicGeometry.HasAffineProperty.affineAnd_eq_of_propertyIsLocal, CategoryTheory.Localization.LeftBousfield.le_W_iff, le_ind, AlgebraicGeometry.Etale.instHasOfPostcompPropertySchemeMinMorphismPropertyLocallyOfFiniteTypeFormallyUnramified, transfiniteCompositionsOfShape_le, HomotopicalAlgebra.trivialFibrations_sub_fibrations, AlgebraicGeometry.IsFinite.eq_proper_inf_locallyQuasiFinite, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_le_monomorphisms, Over.instPreservesFiniteLimitsTopPullback, CategoryTheory.Cat.FreeRefl.multiplicativeClosure_morphismPropertyHomMk, transfiniteCompositionsOfShape_monotone, isStableUnderCobaseChange_iff_pushouts_le, Over.mapPullbackAdj_unit_app, universally_le, CategoryTheory.GrothendieckTopology.PreservesSheafification.le, AlgebraicGeometry.IsLocalIso.eq_iInf, AlgebraicGeometry.topologically_iso_le, Over.mapId_inv_app_left, SSet.Truncated.liftOfStrictSegal.naturalityProperty_eq_top, AlgebraicGeometry.instHasOfPostcompPropertySchemeQuasiSeparatedTopMorphismProperty, le_pushouts, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.iSup_W, Over.mapCongr_hom_app_left, IsLocalAtTarget.top, strictMap_multiplicativeClosure_le, CategoryTheory.SmallObject.succStruct_prop_le_propArrow, isoClosure_le_iff, instIsStableUnderCobaseChangeTop, Over.forget_comp_forget_map, Over.pullbackComp_inv_app_left, coproducts_le_iff, instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ΞΉ_app, CategoryTheory.ObjectProperty.galoisConnection_isColocal, map_inverseImage_le, le_isLocal_isLocal, gc_llp_rlp, SimplexCategory.Truncated.morphismProperty_eq_top, HomotopicalAlgebra.trivialFibrations_sub_weakEquivalences, instHasOfPrecompPropertyTop, HasCardinalLT.sup, instIsStableUnderRetractsMin, retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp, iSup_iff, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, map_le_iff, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, CategoryTheory.ObjectProperty.le_isLocal_iff, le_coproducts, RespectsLeft.inf, instFullUnderTopUnderForget, CategoryTheory.Paths.morphismProperty_eq_top', CategoryTheory.Localization.Construction.morphismProperty_is_top', instIsLeftAdjointOverTopMapOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, Over.mapComp_hom_app_left, le_pullbacks, CategoryTheory.ObjectProperty.epimorphisms_le_epiModSerre, antitone_rlp, bijective_eq_sup, IsStableUnderTransfiniteCompositionOfShape.le, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ΞΉ_transitionMap_assoc, instIsStableUnderBaseChangeTop, Over.w_assoc, le_llp_rlp, AlgebraicGeometry.HasRingHomProperty.inf, CategoryTheory.Localization.Construction.morphismProperty_eq_top, instHasOfPostcompPropertyTop, le_llp_iff_le_rlp, coproducts_le, CategoryTheory.ObjectProperty.le_isColocal_iff, instFaithfulCostructuredArrowTopOverToOver, AlgebraicGeometry.isOpenImmersion_eq_inf, CostructuredArrow.toOver_map, AlgebraicGeometry.instHasCoproductsOfShapeOverSchemeTopMorphismPropertyOfSmall, le_retracts, instHasOfPrecompPropertyMin, AlgebraicGeometry.IsClosedImmersion.eq_inf, CategoryTheory.ObjectProperty.monomorphisms_le_monoModSerre, CostructuredArrow.toOver_obj, Under.w, pretopology_inf, AlgebraicGeometry.targetAffineLocally_affineAnd_eq_affineLocally, inf, RespectsRight.inf, coproducts_le_llp_rlp, Over.mk_left, AlgebraicGeometry.isPreimmersion_eq_inf, CostructuredArrow.mk_left, AlgebraicGeometry.isProper_eq, Under.Hom.ext_iff, limitsOfShape_le, Under.mk_left, retracts_le_iff, AlgebraicGeometry.universallyClosed_eq_universallySpecializing, transfiniteCompositionsOfShape_le_llp_rlp, Over.instPreservesFiniteLimitsTopOverForget, AlgebraicGeometry.Flat.surjective_descendsAlong_surjective_inf_flat_inf_quasicompact, retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, AlgebraicGeometry.IsProper.eq_valuativeCriterion, Under.forget_comp_forget_map, IsInvertedBy.iff_le_inverseImage_isomorphisms, AlgebraicGeometry.IsClosedImmersion.eq_isFinite_inf_mono, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, instFullOverTopOverForget, isomorphisms_le_pushouts, Comma.hasColimitsOfShape_of_closedUnderColimitsOfShape, Over.w, IsStableUnderComposition.inf, AlgebraicGeometry.UniversallyClosed.eq_valuativeCriterion, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, le_leftBousfieldW_isLocal, AlgebraicGeometry.Scheme.instLocallyCoverDenseOverTopMorphismPropertyOverForgetOverGrothendieckTopology, CodescendsAlong.top, colimitsOfShape_le_of_final, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, CategoryTheory.LocalizerMorphism.map, AlgebraicGeometry.isomorphisms_eq_isOpenImmersion_inf_surjective, instHasOfPostcompPropertyMin, CategoryTheory.Cat.FreeRefl.morphismProperty_eq_top, CategoryTheory.Paths.morphismProperty_eq_top_of_isMultiplicative, transfiniteCompositions_le, AlgebraicGeometry.instHasOfPostcompPropertySchemeIsSeparatedTopMorphismProperty, Comma.hasColimit_of_closedUnderColimitsOfShape, AlgebraicGeometry.geometrically_inf, CostructuredArrow.Hom.ext_iff, AlgebraicGeometry.IsImmersion.instHasOfPostcompPropertySchemeTopMorphismProperty, retracts_le_llp_rlp, AlgebraicGeometry.Scheme.smallGrothendieckTopology_eq_toGrothendieck_smallPretopology, Over.pullback_map_left, AlgebraicGeometry.IsFinite.eq_isProper_inf_isAffineHom, antitone_llp, AlgebraicGeometry.targetAffineLocally_affineAnd_le, sSup_iff, AlgebraicGeometry.instIsLocallyDirectedCompSchemeOverOverTopMorphismPropertyForgetForgetForget, SSet.modelCategoryQuillen.J_le_monomorphisms, isStableUnderTransfiniteCompositionOfShape_iff, Over.pullback_obj_hom, CategoryTheory.FreeGroupoid.instIsLocalizationOfTopMorphismProperty, instHasTwoOutOfThreePropertyTop, le_isColocal_isColocal, Over.mapComp_inv_app_left, CategoryTheory.Localization.morphismProperty_eq_top, Under.w_assoc, instFullCostructuredArrowTopOverToOver, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, map_top_eq_top_of_essSurj_of_full, instHasTwoOutOfThreePropertyMin, instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, precoverage_inf, AlgebraicGeometry.HasAffineProperty.affineAnd_le_isAffineHom, IsStableUnderCobaseChange.inf, monotone_isoClosure, AlgebraicGeometry.isomorphisms_eq_stalkwise, transfiniteCompositions_pushouts_coproducts_le_llp_rlp, AlgebraicGeometry.IsOpenImmersion.le_monomorphisms, le_def, AlgebraicGeometry.IsFinite.eq_inf, pushouts_le_llp_rlp, AlgebraicGeometry.affineLocally_le, AlgebraicGeometry.GeometricallyIntegral.eq_geometricallyReduced_inf_geometricallyIrreducible, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₃_W, isStableUnderColimitsOfShape_iff_colimitsOfShape_le, toSet_max, le_isoClosure, CategoryTheory.ObjectProperty.galoisConnection_isLocal, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, pullbacks_monotone, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, universally_mono, presheaf_monomorphisms_le_monomorphisms, pushouts_le_iff, isStableUnderBaseChange_iff_pullbacks_le, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ‚„_W, AlgebraicGeometry.IsIntegralHom.eq_universallyClosed_inf_isAffineHom, pullbacks_le, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.ConcreteCategory.injective_le_monomorphisms, pushouts_monotone, le_colimitsOfShape_punit, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ‚‚_W, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, retracts_monotone, Over.mapId_hom_app_left, Over.pullbackComp_left_fst_fst, CategoryTheory.ConcreteCategory.surjective_le_epimorphisms, IsLocalAtTarget.inf, Comma.hasLimitsOfShape_of_closedUnderLimitsOfShape, CategoryTheory.isGroupoid_iff_isomorphisms_eq_top, le_multiplicativeClosure, CategoryTheory.Localization.instIsGroupoidLocalizationTopMorphismProperty, top_apply, AlgebraicGeometry.instHasFiniteCoproductsOverSchemeTopMorphismProperty, CategoryTheory.Localization.Construction.morphismProperty_is_top, AlgebraicGeometry.ValuativeCriterion.eq, SSet.Truncated.HomotopyCategory.morphismProperty_eq_top, transfiniteCompositions_monotone, top_eq, Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.sup_W, transfiniteCompositions_le_llp_rlp, AlgebraicGeometry.descendsAlong_universallyOpen_surjective_inf_flat_inf_quasicompact, CostructuredArrow.mk_hom, CategoryTheory.Paths.morphismProperty_eq_top, Comma.hasLimit_of_closedUnderLimitsOfShape, AlgebraicGeometry.sourceLocalClosure.le, Over.map_obj_hom, AlgebraicGeometry.descendsAlong_universallyInjective_surjective_inf_flat_inf_quasicompact, instFaithfulUnderTopUnderForget, multiplicativeClosure_le_iff, le_transfiniteCompositions, toSet_iSup, transfiniteCompositions_le_iff, SimplexCategory.morphismProperty_eq_top
instInhabited πŸ“–CompOpβ€”
inverseImage πŸ“–CompOp
40 mathmath: inverseImage_equivalence_inverse_eq_map_functor, over_eq_inverseImage, CategoryTheory.Adjunction.hasLeftCalculusOfFractions', instIsMonoidalInverseImageOfMonoidalOfRespectsIso, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms, IsMultiplicative.instInverseImage, CategoryTheory.ObjectProperty.isColocal_eq_inverseImage_isomorphisms, IsStableUnderComposition.inverseImage, CategoryTheory.Adjunction.isLocalization_rightAdjoint', CategoryTheory.Localization.LeftBousfield.W_eq_inverseImage_isomorphisms, inverseImage_map_eq_of_isEquivalence, CategoryTheory.Adjunction.isLocalization_leftAdjoint', CategoryTheory.GrothendieckTopology.PreservesSheafification.le, under_eq_inverseImage, CategoryTheory.Adjunction.isLocalization, CategoryTheory.GrothendieckTopology.W_inverseImage_whiskeringLeft, map_inverseImage_le, comap_precoverage, eq_inverseImage_quotientFunctor, instIsStableUnderRetractsInverseImage, map_le_iff, op_inverseImage, CategoryTheory.Adjunction.isLocalization', IsInvertedBy.iff_le_inverseImage_isomorphisms, CategoryTheory.LocalizerMorphism.map, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_unit, ContainsIdentities.inverseImage, IsCompatibleWithShift.condition, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction, inverseImage_iff, TransfiniteCompositionOfShape.map_toTransfiniteCompositionOfShape, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_counit, CategoryTheory.Abelian.isoModSerre_kernel_eq_inverseImage_isomorphisms, CategoryTheory.Adjunction.hasRightCalculusOfFractions', inverseImage_equivalence_functor_eq_map_inverse, AlgebraicGeometry.isomorphisms_eq_stalkwise, RespectsIso.inverseImage, map_inverseImage_eq_of_isEquivalence, CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms, instHasTwoOutOfThreePropertyInverseImage
isoClosure πŸ“–CompOp
11 mathmath: map_isoClosure, isoClosure_le_iff, map_inverseImage_le, isoClosure_eq_iff, IsInvertedBy.isoClosure_iff, isoClosure_isoClosure, monotone_isoClosure, le_isoClosure, isoClosure_respectsIso, isoClosure_eq_self, map_id_eq_isoClosure
isomorphisms πŸ“–CompOp
53 mathmath: CategoryTheory.ObjectProperty.InheritedFromSource.instIsomorphismsOfIsClosedUnderIsomorphisms, CategoryTheory.Adjunction.hasLeftCalculusOfFractions', isomorphisms_le_of_containsIdentities, IsLocalAtTarget.toRespects, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms, IsStableUnderCobaseChange.isomorphisms, CategoryTheory.ObjectProperty.isomorphisms_le_isoModSerre, isomorphisms.iff, IsInvertedBy.iff_map_le_isomorphisms, AlgebraicGeometry.descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact, IsStableUnderBaseChange.isomorphisms, CategoryTheory.ObjectProperty.isColocal_eq_inverseImage_isomorphisms, functorCategory_isomorphisms, CategoryTheory.IsGrothendieckAbelian.isomorphisms_le_pushouts_generatingMonomorphisms, CategoryTheory.Adjunction.isLocalization_rightAdjoint', CategoryTheory.Localization.LeftBousfield.W_eq_inverseImage_isomorphisms, op_isomorphisms, CategoryTheory.Functor.relativelyRepresentable.isomorphisms_le, CategoryTheory.Adjunction.isLocalization_leftAdjoint', AlgebraicGeometry.topologically_iso_le, TransfiniteCompositionOfShape.instIsIsoAppIncl, CategoryTheory.Adjunction.isLocalization, instHasTwoOutOfThreePropertyIsomorphisms, IsStableUnderColimitsOfShape.isomorphisms, CategoryTheory.ObjectProperty.InheritedFromTarget.instIsomorphismsOfIsClosedUnderIsomorphisms, instIsStableUnderFilteredColimitsIsomorphisms, TransfiniteCompositionOfShape.instIsIsoMapF, RespectsIso.isomorphisms, CategoryTheory.Adjunction.isLocalization', CategoryTheory.Precoverage.ZeroHypercover.instIsLocalAtTargetIsomorphisms, isomorphisms.infer_property, IsStableUnderRetracts.isomorphisms, IsInvertedBy.iff_le_inverseImage_isomorphisms, isomorphisms_le_pushouts, AlgebraicGeometry.isomorphisms_eq_isOpenImmersion_inf_surjective, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_unit, instHasOfPostcompPropertyIsomorphismsOfRespectsIso, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ΞΉIteration_app_right, CategoryTheory.Adjunction.functorCategory_inverseImage_isomorphisms_counit, AlgebraicGeometry.Scheme.instIsLocalAtTargetIsomorphismsZariskiPrecoverage, CategoryTheory.Abelian.isoModSerre_kernel_eq_inverseImage_isomorphisms, CategoryTheory.Adjunction.hasRightCalculusOfFractions', AlgebraicGeometry.instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop, diagonal_isomorphisms, instHasOfPrecompPropertyIsomorphismsOfRespectsIso, AlgebraicGeometry.isomorphisms_eq_stalkwise, IsMultiplicative.instIsomorphisms, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ΞΉIteration_app_right_assoc, IsLocalAtSource.toRespects, CategoryTheory.isGroupoid_iff_isomorphisms_eq_top, CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms, isomorphisms_op
map πŸ“–CompOp
18 mathmath: inverseImage_equivalence_inverse_eq_map_functor, map_id, IsInvertedBy.iff_map_le_isomorphisms, monotone_map, map_map, inverseImage_map_eq_of_isEquivalence, map_isoClosure, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, map_eq_of_iso, map_inverseImage_le, map_le_iff, map_respectsIso, inverseImage_equivalence_functor_eq_map_inverse, map_top_eq_top_of_essSurj_of_full, map_mem_map, map_id_eq_isoClosure, IsInvertedBy.map_iff, map_inverseImage_eq_of_isEquivalence
monomorphisms πŸ“–CompOp
44 mathmath: CategoryTheory.IsGrothendieckAbelian.instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp, instIsStableUnderTransfiniteCompositionOfShapeFunctorMonomorphismsOfHasPullbacksOfHasIterationOfShape, SSet.modelCategoryQuillen.I_le_monomorphisms, AlgebraicGeometry.instIsZariskiLocalAtTargetMonomorphismsScheme, SSet.instIsStableUnderFilteredColimitsMonomorphisms, AlgebraicGeometry.IsClosedImmersion.eq_proper_inf_monomorphisms, SSet.modelCategoryQuillen.cofibrations_eq, RespectsIso.monomorphisms, CategoryTheory.IsGrothendieckAbelian.instIsStableUnderTransfiniteCompositionMonomorphisms, instIsStableUnderCoproductsMonomorphismsOfAB4OfSize, CategoryTheory.Types.instIsStableUnderCobaseChangeMonomorphismsType, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_le_monomorphisms, CategoryTheory.ConcreteCategory.injective_eq_monomorphisms, SSet.instIsStableUnderCoproductsMonomorphismsOfHasCoproductsType, monomorphisms.iff, isStableUnderColimitsOfShape_monomorphisms, SSet.instIsStableUnderCobaseChangeMonomorphisms, CategoryTheory.ConcreteCategory.injective_eq_monomorphisms_iff, instIsStableUnderCoproductsOfShapeFunctorMonomorphismsOfHasCoproductsOfShapeOfHasPullbacks, CategoryTheory.Abelian.instIsStableUnderCobaseChangeMonomorphisms, CategoryTheory.Types.instIsStableUnderFilteredColimitsMonomorphismsType, functorCategory_monomorphisms, CategoryTheory.IsGrothendieckAbelian.llp_rlp_monomorphisms, CategoryTheory.ObjectProperty.monomorphisms_le_monoModSerre, instIsStableUnderFilteredColimitsMonomorphismsOfAB5OfSize, CategoryTheory.Types.instIsStableUnderCoproductsOfShapeMonomorphismsType, IsStableUnderBaseChange.hasOfPostcompProperty_monomorphisms, CategoryTheory.injective_iff_rlp_monomorphisms_of_isZero, AlgebraicGeometry.IsClosedImmersion.eq_isFinite_inf_mono, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_rlp, monomorphisms.infer_property, SSet.modelCategoryQuillen.J_le_monomorphisms, IsStableUnderBaseChange.monomorphisms, instIsStableUnderCoproductsFunctorMonomorphismsOfHasCoproductsOfHasPullbacks, CategoryTheory.IsGrothendieckAbelian.instHasFunctorialFactorizationMonomorphismsRlp, diagonal_isomorphisms, AlgebraicGeometry.IsOpenImmersion.le_monomorphisms, presheaf_monomorphisms_le_monomorphisms, IsStableUnderRetracts.monomorphisms, CategoryTheory.Types.instIsStableUnderCoproductsMonomorphismsType, CategoryTheory.ConcreteCategory.injective_le_monomorphisms, CategoryTheory.injective_iff_rlp_monomorphisms_zero, IsMultiplicative.instMonomorphisms
ofHoms πŸ“–CompData
13 mathmath: ofHoms_iff, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₁_W, isSmall_iff_eq_ofHoms, HomotopicalAlgebra.AttachCells.pushouts_coproducts, ofHoms_homFamily, HomotopicalAlgebra.nonempty_attachCells_iff, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.single_W, hasCardinalLT_ofHoms, isSmall_ofHoms, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₃_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ‚„_W, HomotopicalAlgebra.RelativeCellComplex.transfiniteCompositionOfShape_toTransfiniteCompositionOfShape, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ‚‚_W
op πŸ“–CompOp
74 mathmath: CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_map_f, CategoryTheory.Localization.isLocalization_op, instHasOfPrecompPropertyOppositeOpOfHasOfPostcompProperty, IsStableUnderCobaseChange.op, LeftFraction.op_map, LeftFraction.op_X', HomotopicalAlgebra.weakEquivalences_op, CategoryTheory.LocalizerMorphism.hasLeftResolutions_iff_op, CategoryTheory.LocalizerMorphism.RightResolution.op_X₁, instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions, CategoryTheory.LocalizerMorphism.LeftResolution.unop_X₁, op_isomorphisms, CategoryTheory.LocalizerMorphism.RightResolution.unop_X₁, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_unitIso, CategoryTheory.LocalizerMorphism.instHasLeftResolutionsOppositeOpOpOfHasRightResolutions, RespectsIso.op, CategoryTheory.LocalizerMorphism.nonempty_rightResolution_iff_op, IsStableUnderComposition.op, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, instHasFactorizationOppositeOp, CategoryTheory.ObjectProperty.InheritedFromTarget.op, HomotopicalAlgebra.cofibrations_op, MapFactorizationData.op_Z, CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_obj, CategoryTheory.LocalizerMorphism.LeftResolution.unop_w, RightFractionRel.op, instHasTwoOutOfThreePropertyOppositeOp, IsStableUnderBaseChange.op, CategoryTheory.LocalizerMorphism.instIsLocalizedEquivalenceOppositeOpOp, instHasOfPostcompPropertyOppositeOpOfHasOfPrecompProperty, LeftFraction.op_f, CategoryTheory.Functor.op_iff, IsMultiplicative.op, LeftFraction.op_s, IsInvertedBy.leftOp, MapFactorizationData.op_i, CategoryTheory.Functor.IsLocalization.op_iff, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_obj, rightFractionRel_op_iff, HomotopicalAlgebra.trivialCofibrations_op, op_inverseImage, RightFraction.op_f, RightFraction.op_map, IsInvertedBy.op, CategoryTheory.LocalizerMorphism.op_functor, CategoryTheory.LocalizerMorphism.nonempty_leftResolution_iff_op, ContainsIdentities.op, CategoryTheory.LocalizerMorphism.RightResolution.unop_w, HomotopicalAlgebra.fibrations_op, CategoryTheory.LocalizerMorphism.LeftResolution.op_w, CategoryTheory.ObjectProperty.InheritedFromSource.op, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_map_f, instRespectsLeftOppositeOpOfRespectsRight, op_unop, leftFractionRel_op_iff, StableUnderInverse.op, instRespectsRightOppositeOpOfRespectsLeft, instHasRightCalculusOfFractionsOppositeOpOfHasLeftCalculusOfFractions, CategoryTheory.LocalizerMorphism.LeftResolution.op_X₁, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso, CategoryTheory.LocalizerMorphism.RightResolution.op_w, instIsStableUnderRetractsOppositeOp, LeftFractionRel.op, HomotopicalAlgebra.trivialFibrations_op, CategoryTheory.LocalizerMorphism.hasRightResolutions_iff_op, CategoryTheory.Functor.IsLocalization.op, RightFraction.op_s, MapFactorizationData.op_p, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_functor, CategoryTheory.LocalizerMorphism.instHasRightResolutionsOppositeOpOpOfHasLeftResolutions, RightFraction.op_Y', isomorphisms_op, unop_op, CategoryTheory.LocalizerMorphism.isLeftDerivabilityStructure_iff_op
pi πŸ“–CompOp
3 mathmath: IsInvertedBy.pi, Pi.containsIdentities, CategoryTheory.Functor.IsLocalization.pi
prod πŸ“–CompOp
4 mathmath: CategoryTheory.Localization.Construction.prodIsLocalization, CategoryTheory.Functor.IsLocalization.prod, Prod.containsIdentities, IsInvertedBy.prod
strictMap πŸ“–CompData
3 mathmath: map_mem_strictMap, strictMap_multiplicativeClosure_le, SSet.Truncated.HomotopyCategory.morphismPropertyHomMk_eq_strictMap
toSet πŸ“–CompOp
21 mathmath: CategoryTheory.OrthogonalReflection.D₁.ΞΉ_comp_t_assoc, arrow_mk_mem_toSet_iff, CategoryTheory.SmallObject.ΞΉFunctorObj_eq, ofHoms_homFamily, CategoryTheory.OrthogonalReflection.Dβ‚‚.multispanIndex_left, homFamily_arrow_mk, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, mem_toSet_iff, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.SmallObject.Ο€FunctorObj_eq, CategoryTheory.OrthogonalReflection.D₁.ΞΉ_comp_t, IsSmall.small_toSet, CategoryTheory.OrthogonalReflection.Dβ‚‚.multispanIndex_fst, IsCardinalForSmallObjectArgument.preservesColimit, toSet_max, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, homFamily_apply, CategoryTheory.OrthogonalReflection.Dβ‚‚.multispanIndex_snd, toSet_iSup
unop πŸ“–CompOp
29 mathmath: LeftFractionRel.unop, instHasLeftCalculusOfFractionsUnopOfHasRightCalculusOfFractionsOpposite, IsStableUnderComposition.unop, RespectsIso.unop, RightFractionRel.unop, LeftFraction.unop_X', instHasTwoOutOfThreePropertyUnopOfOpposite, RightFraction.unop_s, ContainsIdentities.unop, instIsStableUnderRetractsUnopOfOpposite, IsStableUnderBaseChange.unop, LeftFraction.unop_f, HomotopicalAlgebra.fibrations_eq_unop, instHasOfPostcompPropertyUnopOfHasOfPrecompPropertyOpposite, LeftFraction.unop_s, instHasOfPrecompPropertyUnopOfHasOfPostcompPropertyOpposite, HomotopicalAlgebra.cofibrations_eq_unop, HomotopicalAlgebra.trivialFibrations_eq_unop, CategoryTheory.Functor.IsLocalization.unop, instHasRightCalculusOfFractionsUnopOfHasLeftCalculusOfFractionsOpposite, RightFraction.unop_f, HomotopicalAlgebra.trivialCofibrations_eq_unop, op_unop, HomotopicalAlgebra.weakEquivalences_eq_unop, IsStableUnderCobaseChange.unop, StableUnderInverse.unop, IsMultiplicative.unop, RightFraction.unop_Y', unop_op

Theorems

NameKindAssumesProvesValidatesDepends On
arrow_iso_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”comma_iso_iff
arrow_mk_iso_iff πŸ“–β€”β€”β€”β€”arrow_iso_iff
arrow_mk_mem_toSet_iff πŸ“–mathematicalβ€”CategoryTheory.Arrow
Set
Set.instMembership
toSet
β€”β€”
cancel_left_of_respectsIso πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.IsIso.inv_hom_id_assoc
RespectsIso.precomp
CategoryTheory.IsIso.inv_isIso
cancel_right_of_respectsIso πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
RespectsIso.postcomp
CategoryTheory.IsIso.inv_isIso
comma_iso_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”CategoryTheory.Functor.map_isIso
CategoryTheory.Comma.instIsIsoLeft
CategoryTheory.Iso.isIso_hom
CategoryTheory.Comma.inv_left_hom_right
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.inv_isIso
CategoryTheory.Comma.instIsIsoRight
ext πŸ“–β€”β€”β€”β€”β€”
ext_iff πŸ“–β€”β€”β€”β€”ext
homFamily_apply πŸ“–mathematicalβ€”homFamily
CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Arrow
Set
Set.instMembership
toSet
β€”β€”
homFamily_arrow_mk πŸ“–mathematicalβ€”homFamily
CategoryTheory.Arrow
Set
Set.instMembership
toSet
β€”β€”
iSup_iff πŸ“–mathematicalβ€”iSup
CategoryTheory.MorphismProperty
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
β€”sSup_iff
inf πŸ“–mathematicalβ€”RespectsIso
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
β€”RespectsLeft.inf
Respects.toRespectsLeft
RespectsRight.inf
Respects.toRespectsRight
instRespectsIsoTop πŸ“–mathematicalβ€”RespectsIso
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
β€”β€”
instRespectsLeftOppositeOpOfRespectsRight πŸ“–mathematicalβ€”RespectsLeft
Opposite
CategoryTheory.CategoryStruct.opposite
op
β€”RespectsRight.postcomp
instRespectsOfRespectsLeftOfRespectsRight πŸ“–mathematicalβ€”Respectsβ€”β€”
instRespectsRightOppositeOpOfRespectsLeft πŸ“–mathematicalβ€”RespectsRight
Opposite
CategoryTheory.CategoryStruct.opposite
op
β€”RespectsLeft.precomp
inverseImage_equivalence_functor_eq_map_inverse πŸ“–mathematicalβ€”inverseImage
CategoryTheory.Equivalence.inverse
map
CategoryTheory.Equivalence.functor
β€”inverseImage_equivalence_inverse_eq_map_functor
inverseImage_equivalence_inverse_eq_map_functor πŸ“–mathematicalβ€”inverseImage
CategoryTheory.Equivalence.functor
map
CategoryTheory.Equivalence.inverse
β€”le_antisymm
map_le_iff
RespectsIso.inverseImage
arrow_mk_iso_iff
inverseImage_iff πŸ“–mathematicalβ€”inverseImage
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”β€”
inverseImage_map_eq_of_isEquivalence πŸ“–mathematicalβ€”inverseImage
map
β€”inverseImage_equivalence_inverse_eq_map_functor
map_respectsIso
map_map
map_eq_of_iso
map_id
isoClosure_eq_iff πŸ“–mathematicalβ€”isoClosure
RespectsIso
β€”isoClosure_respectsIso
le_antisymm
arrow_mk_iso_iff
le_isoClosure
isoClosure_eq_self πŸ“–mathematicalβ€”isoClosureβ€”isoClosure_eq_iff
isoClosure_isoClosure πŸ“–mathematicalβ€”isoClosureβ€”isoClosure_eq_self
isoClosure_respectsIso
isoClosure_le_iff πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
isoClosure
β€”LE.le.trans
le_isoClosure
monotone_isoClosure
isoClosure_eq_self
le_refl
isoClosure_respectsIso πŸ“–mathematicalβ€”RespectsIso
isoClosure
β€”CategoryTheory.Arrow.isIso_left
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsIso.inv_isIso
CategoryTheory.Arrow.isIso_right
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.Arrow.w_mk_right
CategoryTheory.Arrow.w_mk_right_assoc
isomorphisms_op πŸ“–mathematicalβ€”op
CategoryTheory.Category.toCategoryStruct
isomorphisms
Opposite
CategoryTheory.Category.opposite
β€”op_isomorphisms
le_def πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
β€”β€”
le_isoClosure πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
isoClosure
β€”β€”
map_eq_of_iso πŸ“–mathematicalβ€”mapβ€”le_antisymm
map_id πŸ“–mathematicalβ€”map
CategoryTheory.Functor.id
β€”map_id_eq_isoClosure
isoClosure_eq_self
map_id_eq_isoClosure πŸ“–mathematicalβ€”map
CategoryTheory.Functor.id
isoClosure
β€”β€”
map_inverseImage_eq_of_isEquivalence πŸ“–mathematicalβ€”map
inverseImage
β€”inverseImage_equivalence_inverse_eq_map_functor
map_map
map_eq_of_iso
map_id
map_inverseImage_le πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
map
inverseImage
isoClosure
β€”β€”
map_isoClosure πŸ“–mathematicalβ€”map
isoClosure
β€”le_antisymm
map_le_iff
map_respectsIso
monotone_map
le_isoClosure
map_le_iff πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
map
inverseImage
β€”map_mem_map
arrow_mk_iso_iff
map_map πŸ“–mathematicalβ€”map
CategoryTheory.Functor.comp
β€”le_antisymm
map_le_iff
map_respectsIso
map_mem_map
map_mem_map πŸ“–mathematicalβ€”map
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”β€”
map_mem_strictMap πŸ“–mathematicalβ€”strictMap
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”β€”
map_respectsIso πŸ“–mathematicalβ€”RespectsIso
map
β€”RespectsIso.of_respects_arrow_iso
map_top_eq_top_of_essSurj_of_full πŸ“–mathematicalβ€”map
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
β€”eq_top_iff
CategoryTheory.Functor.map_preimage
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
mem_toSet_iff πŸ“–mathematicalβ€”CategoryTheory.Arrow
Set
Set.instMembership
toSet
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
monotone_isoClosure πŸ“–mathematicalβ€”Monotone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
isoClosure
β€”β€”
monotone_map πŸ“–mathematicalβ€”Monotone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
map
β€”β€”
ofHoms_homFamily πŸ“–mathematicalβ€”ofHoms
Set.Elem
CategoryTheory.Arrow
toSet
CategoryTheory.Comma.left
CategoryTheory.Functor.id
Set
Set.instMembership
CategoryTheory.Comma.right
homFamily
β€”ext
ofHoms_iff
ofHoms_iff πŸ“–mathematicalβ€”ofHomsβ€”arrow_mk_mem_toSet_iff
of_eq πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
β€”β€”arrow_mk_mem_toSet_iff
CategoryTheory.Arrow.mk_eq_mk_iff
of_eq_top πŸ“–β€”Top.top
CategoryTheory.MorphismProperty
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
β€”β€”β€”
op_inverseImage πŸ“–mathematicalβ€”op
CategoryTheory.Category.toCategoryStruct
inverseImage
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
op_isomorphisms πŸ“–mathematicalβ€”op
CategoryTheory.Category.toCategoryStruct
isomorphisms
Opposite
CategoryTheory.Category.opposite
β€”ext
CategoryTheory.isIso_unop_iff
op_unop πŸ“–mathematicalβ€”op
unop
β€”β€”
sSup_iff πŸ“–mathematicalβ€”SupSet.sSup
CategoryTheory.MorphismProperty
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
Set
Set.instMembership
β€”β€”
toSet_iSup πŸ“–mathematicalβ€”toSet
iSup
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
Set.iUnion
CategoryTheory.Arrow
β€”Set.ext
toSet_max πŸ“–mathematicalβ€”toSet
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
Set
CategoryTheory.Arrow
Set.instUnion
β€”β€”
top_apply πŸ“–mathematicalβ€”Top.top
CategoryTheory.MorphismProperty
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
β€”β€”
top_eq πŸ“–mathematicalβ€”Top.top
CategoryTheory.MorphismProperty
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
β€”β€”
unop_op πŸ“–mathematicalβ€”unop
op
β€”β€”

CategoryTheory.MorphismProperty.Respects

Theorems

NameKindAssumesProvesValidatesDepends On
toRespectsLeft πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsLeftβ€”β€”
toRespectsRight πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsRightβ€”β€”

CategoryTheory.MorphismProperty.RespectsIso

Theorems

NameKindAssumesProvesValidatesDepends On
epimorphisms πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.MorphismProperty.epimorphisms
β€”CategoryTheory.epi_comp
CategoryTheory.IsIso.epi_of_iso
CategoryTheory.Iso.isIso_hom
inverseImage πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.MorphismProperty.inverseImage
β€”CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_isIso
isomorphisms πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.MorphismProperty.isomorphisms
β€”CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
mk πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MorphismProperty.RespectsIsoβ€”β€”
monomorphisms πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.MorphismProperty.monomorphisms
β€”CategoryTheory.mono_comp
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.Iso.isIso_hom
of_respects_arrow_iso πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.MorphismProperty.RespectsIsoβ€”CategoryTheory.IsIso.inv_isIso
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
op πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
β€”postcomp
CategoryTheory.isIso_unop
precomp
postcomp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.MorphismProperty.RespectsRight.postcomp
CategoryTheory.MorphismProperty.Respects.toRespectsRight
precomp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.MorphismProperty.RespectsLeft.precomp
CategoryTheory.MorphismProperty.Respects.toRespectsLeft
unop πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
β€”postcomp
CategoryTheory.isIso_op
precomp

CategoryTheory.MorphismProperty.RespectsLeft

Theorems

NameKindAssumesProvesValidatesDepends On
inf πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsLeft
CategoryTheory.MorphismProperty
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
β€”precomp
precomp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.compβ€”β€”

CategoryTheory.MorphismProperty.RespectsRight

Theorems

NameKindAssumesProvesValidatesDepends On
inf πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsRight
CategoryTheory.MorphismProperty
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
β€”postcomp
postcomp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.compβ€”β€”

CategoryTheory.MorphismProperty.epimorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
iff πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.epimorphisms
CategoryTheory.Epi
β€”β€”
infer_property πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.epimorphismsβ€”β€”

CategoryTheory.MorphismProperty.isomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
iff πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.IsIso
β€”β€”
infer_property πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.isomorphismsβ€”β€”

CategoryTheory.MorphismProperty.monomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
iff πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.Mono
β€”β€”
infer_property πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.monomorphismsβ€”β€”

CategoryTheory.NatTrans

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_app_iff_of_iso πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Functor.obj
app
β€”CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
naturality

---

← Back to Index