Documentation Verification Report

Composition

📁 Source: Mathlib/CategoryTheory/MorphismProperty/Composition.lean

Statistics

MetricCount
DefinitionsContainsIdentities, HasOfPostcompProperty, HasOfPrecompProperty, HasTwoOutOfThreeProperty, IsMultiplicative, IsStableUnderComposition, StableUnderInverse, multiplicativeClosure, multiplicativeClosure', naturalityProperty
10
TheoremseqToHom, id_mem, inf, inverseImage, of_op, of_unop, op, unop, of_le, of_postcomp, of_le, of_precomp, toHasOfPostcompProperty, toHasOfPrecompProperty, toIsStableUnderComposition, inf, instEpimorphisms, instInverseImage, instIsomorphisms, instMonomorphisms, instTop, naturalityProperty, of_op, of_unop, op, toContainsIdentities, toIsStableUnderComposition, unop, comp_mem, inf, inverseImage, op, unop, containsIdentities, containsIdentities, op, unop, comp_mem, id_mem, instHasOfPostcompPropertyIsomorphismsOfRespectsIso, instHasOfPostcompPropertyMin, instHasOfPostcompPropertyOppositeOpOfHasOfPrecompProperty, instHasOfPostcompPropertyTop, instHasOfPostcompPropertyUnopOfHasOfPrecompPropertyOpposite, instHasOfPrecompPropertyIsomorphismsOfRespectsIso, instHasOfPrecompPropertyMin, instHasOfPrecompPropertyOppositeOpOfHasOfPostcompProperty, instHasOfPrecompPropertyTop, instHasOfPrecompPropertyUnopOfHasOfPostcompPropertyOpposite, instHasTwoOutOfThreePropertyInverseImage, instHasTwoOutOfThreePropertyIsomorphisms, instHasTwoOutOfThreePropertyMin, instHasTwoOutOfThreePropertyOppositeOp, instHasTwoOutOfThreePropertyTop, instHasTwoOutOfThreePropertyUnopOfOpposite, instIsMultiplicativeMultiplicativeClosure, instIsMultiplicativeMultiplicativeClosure', instRespectsOfIsStableUnderComposition, isomorphisms_le_of_containsIdentities, le_multiplicativeClosure, multiplicativeClosure_eq_multiplicativeClosure', multiplicativeClosure_eq_self, multiplicativeClosure_eq_self_iff, multiplicativeClosure_le_iff, multiplicativeClosure_monotone, isStableUnderComposition, stableUnderInverse, of_isIso, of_postcomp, of_precomp, postcomp_iff, precomp_iff, respectsIso_of_isStableUnderComposition, strictMap_multiplicativeClosure_le
74
Total84

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
ContainsIdentities 📖CompData
17 mathmath: ContainsIdentities.inf, AlgebraicGeometry.HasRingHomProperty.containsIdentities, regularEpi.containsIdentities, AlgebraicGeometry.IsLocalIso.eq_iInf, ContainsIdentities.unop, Prod.containsIdentities, IsMultiplicative.toContainsIdentities, AlgebraicGeometry.sourceLocalClosure.instContainsIdentitiesScheme, regularMono.containsIdentities, ContainsIdentities.op, ContainsIdentities.inverseImage, ContainsIdentities.of_op, CategoryTheory.ObjectProperty.instContainsIdentitiesTrWOfContainsZero, AlgebraicGeometry.HasAffineProperty.affineAnd_containsIdentities, instContainsIdentitiesInd, AlgebraicGeometry.IsFinite.instContainsIdentitiesScheme, ContainsIdentities.of_unop
HasOfPostcompProperty 📖CompData
24 mathmath: AlgebraicGeometry.instHasOfPostcompPropertySchemeUniversallyClosedIsSeparated, hasOfPostcompProperty_iff_le_diagonal, HasOfPostcompProperty.of_le, AlgebraicGeometry.instHasOfPostcompPropertySchemeIsClosedImmersionIsSeparated, AlgebraicGeometry.Etale.instHasOfPostcompPropertySchemeMinMorphismPropertyLocallyOfFiniteTypeFormallyUnramified, AlgebraicGeometry.instHasOfPostcompPropertySchemeQuasiSeparatedTopMorphismProperty, AlgebraicGeometry.hasOfPostcompProperty_isOpenImmersion_of_morphismRestrict, instHasOfPostcompPropertyOppositeOpOfHasOfPrecompProperty, instHasOfPostcompPropertyUnopOfHasOfPrecompPropertyOpposite, AlgebraicGeometry.instHasOfPostcompPropertySchemeQuasiCompactQuasiSeparated, instHasOfPostcompPropertyTop, AlgebraicGeometry.IsOpenImmersion.instHasOfPostcompPropertyScheme, AlgebraicGeometry.IsIntegralHom.instHasOfPostcompPropertySchemeIsSeparated, IsStableUnderBaseChange.hasOfPostcompProperty_monomorphisms, AlgebraicGeometry.instHasOfPostcompPropertySchemeIsProperIsSeparated, instHasOfPostcompPropertyMin, instHasOfPostcompPropertyIsomorphismsOfRespectsIso, AlgebraicGeometry.instHasOfPostcompPropertySchemeIsSeparatedTopMorphismProperty, AlgebraicGeometry.IsImmersion.instHasOfPostcompPropertySchemeTopMorphismProperty, HasTwoOutOfThreeProperty.toHasOfPostcompProperty, AlgebraicGeometry.Etale.instHasOfPostcompPropertyScheme, AlgebraicGeometry.instHasOfPostcompPropertySchemeIsAffineHomIsSeparated, AlgebraicGeometry.instHasOfPostcompPropertySchemeIsOpenImmersionOfIsStableUnderBaseChange, AlgebraicGeometry.IsFinite.instHasOfPostcompPropertySchemeIsSeparated
HasOfPrecompProperty 📖CompData
9 mathmath: instHasOfPrecompPropertyOppositeOpOfHasOfPostcompProperty, IsStableUnderCobaseChange.hasOfPrecompProperty_epimorphisms, HasOfPrecompProperty.of_le, HasTwoOutOfThreeProperty.toHasOfPrecompProperty, AlgebraicGeometry.instHasOfPrecompPropertySchemeSurjective, instHasOfPrecompPropertyTop, instHasOfPrecompPropertyUnopOfHasOfPostcompPropertyOpposite, instHasOfPrecompPropertyMin, instHasOfPrecompPropertyIsomorphismsOfRespectsIso
HasTwoOutOfThreeProperty 📖CompData
14 mathmath: instHasTwoOutOfThreePropertyUnopOfOpposite, CategoryTheory.ObjectProperty.instHasTwoOutOfThreePropertyIsLocal, CategoryTheory.ObjectProperty.instHasTwoOutOfThreePropertyIsoModSerre, instHasTwoOutOfThreePropertyOppositeOp, HomotopicalAlgebra.instHasTwoOutOfThreePropertyFullSubcategoryWeakEquivalences, instHasTwoOutOfThreePropertyIsomorphisms, HomologicalComplex.instHasTwoOutOfThreePropertyQuasiIso, HomotopicalAlgebra.ModelCategory.cm2, CategoryTheory.ObjectProperty.instHasTwoOutOfThreePropertyIsColocal, HomotopicalAlgebra.instHasTwoOutOfThreePropertyOverWeakEquivalences, instHasTwoOutOfThreePropertyTop, instHasTwoOutOfThreePropertyMin, HomotopicalAlgebra.instHasTwoOutOfThreePropertyOppositeWeakEquivalences, instHasTwoOutOfThreePropertyInverseImage
IsMultiplicative 📖CompData
72 mathmath: instIsMultiplicativeBijective, AlgebraicGeometry.sourceLocalClosure.instIsMultiplicativeSchemeOfIsStableUnderBaseChange, IsMultiplicative.of_unop, AlgebraicGeometry.instIsMultiplicativeSchemeQuasiCompact, IsMultiplicative.instInverseImage, AlgebraicGeometry.UniversallyOpen.instIsMultiplicativeScheme, CategoryTheory.ObjectProperty.instIsMultiplicativeTrWOfIsTriangulatedOfIsTriangulated, AlgebraicGeometry.instIsMultiplicativeSchemeIsSchemeTheoreticallyDominant, IsMultiplicative.instTop, IsMultiplicative.inf, HomotopicalAlgebra.instIsMultiplicativeTrivialCofibrations, CategoryTheory.ObjectProperty.instIsMultiplicativeIsoModSerre, CategoryTheory.ObjectProperty.instIsMultiplicativeMonoModSerre, AlgebraicGeometry.instIsMultiplicativeSchemeSurjective, CategoryTheory.Functor.relativelyRepresentable.isMultiplicative, AlgebraicGeometry.Flat.instIsMultiplicativeScheme, HomotopicalAlgebra.instIsMultiplicativeFullSubcategoryWeakEquivalences, HomotopicalAlgebra.instIsMultiplicativeFibrations, AlgebraicGeometry.Etale.instIsMultiplicativeScheme, IsMonoidal.toIsMultiplicative, rlp_isMultiplicative, HomologicalComplex.instIsMultiplicativeQuasiIso, AlgebraicGeometry.HasRingHomProperty.isMultiplicative, AlgebraicGeometry.instIsMultiplicativeSchemeQuasiSeparated, IsMultiplicative.op, multiplicativeClosure_eq_self_iff, AlgebraicGeometry.isOpenImmersion_isMultiplicative, HomotopicalAlgebra.instIsMultiplicativeTrivialFibrations, AlgebraicGeometry.instIsMultiplicativeSchemeUniversallyInjective, AlgebraicGeometry.instIsMultiplicativeSchemeLocallyOfFiniteType, llp_isMultiplicative, AlgebraicGeometry.IsIntegralHom.instIsMultiplicativeScheme_1, AlgebraicGeometry.IsClosedImmersion.instIsMultiplicativeScheme, CategoryTheory.ObjectProperty.instIsMultiplicativeIsColocal, AlgebraicGeometry.IsImmersion.instIsMultiplicativeScheme, CategoryTheory.Abelian.instIsMultiplicativeEpiWithInjectiveKernel, AlgebraicGeometry.instIsMultiplicativeSchemeLocallyQuasiFinite, AlgebraicGeometry.IsFinite.instIsMultiplicativeScheme, AlgebraicGeometry.IsLocalIso.instIsMultiplicativeScheme, HasLeftCalculusOfFractions.toIsMultiplicative, CategoryTheory.ObjectProperty.instIsMultiplicativeIsLocal, AlgebraicGeometry.FormallyUnramified.instIsMultiplicativeScheme, AlgebraicGeometry.IsProper.instIsMultiplicativeScheme, AlgebraicGeometry.instIsMultiplicativeSchemeUniversallyClosed, IsMultiplicative.ind_of_preIndSpreads, instIsMultiplicativeMultiplicativeClosure', AlgebraicGeometry.SurjectiveOnStalks.instIsMultiplicativeScheme, instIsMultiplicativeInjective, AlgebraicGeometry.instIsMultiplicativeSchemeIsDominant, instIsMultiplicativeSurjective, IsMultiplicative.naturalityProperty, AlgebraicGeometry.instIsMultiplicativeSchemeSmoothOfRelativeDimensionOfNatNat, AlgebraicGeometry.IsPreimmersion.instIsMultiplicativeScheme, AlgebraicGeometry.IsSeparated.instIsMultiplicativeScheme, HomotopicalAlgebra.instIsMultiplicativeCofibrations, CategoryTheory.NatTrans.instIsMultiplicativeFunctorEquifibered, AlgebraicGeometry.instIsMultiplicativeSchemeIsAffineHom, AlgebraicGeometry.IsIntegralHom.instIsMultiplicativeScheme, HomotopicalAlgebra.instIsMultiplicativeWeakEquivalencesOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsOfIsStableUnderComposition, CategoryTheory.ObjectProperty.instIsMultiplicativeEpiModSerre, HasRightCalculusOfFractions.toIsMultiplicative, IsMultiplicative.instEpimorphisms, IsMultiplicative.instIsomorphisms, CategoryTheory.NatTrans.instIsMultiplicativeFunctorCoequifibered, relative_isMultiplicative, IsMultiplicative.unop, CochainComplex.instIsMultiplicativeIntDegreewiseEpiWithInjectiveKernel, IsStableUnderTransfiniteComposition.instIsMultiplicative, IsMultiplicative.of_op, TopCat.instIsMultiplicativeIsOpenEmbedding, IsMultiplicative.instMonomorphisms, instIsMultiplicativeMultiplicativeClosure
IsStableUnderComposition 📖CompData
34 mathmath: AlgebraicGeometry.injective_isStableUnderComposition, AlgebraicGeometry.isOpenImmersion_isStableUnderComposition, AlgebraicGeometry.instIsStableUnderCompositionSchemeSmooth, IsStableUnderComposition.unop, relative_isStableUnderComposition, IsStableUnderComposition.inverseImage, AlgebraicGeometry.IsIntegralHom.instIsStableUnderCompositionScheme, AlgebraicGeometry.HasAffineProperty.affineAnd_isStableUnderComposition, IsStableUnderComposition.op, AlgebraicGeometry.instIsStableUnderCompositionSchemeLocallyQuasiFinite, AlgebraicGeometry.universallyClosed_isStableUnderComposition, AlgebraicGeometry.HasRingHomProperty.stableUnderComposition, AlgebraicGeometry.sourceLocalClosure.instIsStableUnderCompositionSchemeOfIsStableUnderBaseChange, AlgebraicGeometry.quasiCompact_isStableUnderComposition, AlgebraicGeometry.instIsStableUnderCompositionSchemeLocallyOfFinitePresentation, AlgebraicGeometry.IsProper.stableUnderComposition, AlgebraicGeometry.UniversallyOpen.instIsStableUnderCompositionSchemeTopologicallyIsOpenMap, AlgebraicGeometry.universallyInjective_isStableUnderComposition, AlgebraicGeometry.isClosedMap_isStableUnderComposition, naturalityProperty.isStableUnderComposition, AlgebraicGeometry.instIsStableUnderCompositionSchemeLocallyOfFiniteType, diagonal_isStableUnderComposition, AlgebraicGeometry.IsSeparated.stableUnderComposition, IsStableUnderComposition.inf, IsMultiplicative.toIsStableUnderComposition, AlgebraicGeometry.topologically_isStableUnderComposition, AlgebraicGeometry.UniversallyOpen.instIsStableUnderCompositionScheme, AlgebraicGeometry.Flat.instIsStableUnderCompositionScheme, AlgebraicGeometry.IsFinite.instIsStableUnderCompositionScheme, IsStableUnderComposition.universally, AlgebraicGeometry.FormallyUnramified.instIsStableUnderCompositionScheme, AlgebraicGeometry.quasiSeparated_isStableUnderComposition, IsStableUnderComposition.ind_of_preIndSpreads, HasTwoOutOfThreeProperty.toIsStableUnderComposition
StableUnderInverse 📖MathDef
1 mathmath: naturalityProperty.stableUnderInverse
multiplicativeClosure 📖CompData
11 mathmath: multiplicativeClosure_eq_self, SimplexCategoryGenRel.multiplicativeClosure_isGenerator_eq_top, SSet.Truncated.HomotopyCategory.multiplicativeClosure_morphismPropertyHomMk, multiplicativeClosure_monotone, CategoryTheory.Cat.FreeRefl.multiplicativeClosure_morphismPropertyHomMk, strictMap_multiplicativeClosure_le, multiplicativeClosure_eq_self_iff, multiplicativeClosure_eq_multiplicativeClosure', le_multiplicativeClosure, multiplicativeClosure_le_iff, instIsMultiplicativeMultiplicativeClosure
multiplicativeClosure' 📖CompData
2 mathmath: instIsMultiplicativeMultiplicativeClosure', multiplicativeClosure_eq_multiplicativeClosure'
naturalityProperty 📖CompOp
3 mathmath: naturalityProperty.stableUnderInverse, naturalityProperty.isStableUnderComposition, IsMultiplicative.naturalityProperty

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mem 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
IsStableUnderComposition.comp_mem
id_mem 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ContainsIdentities.id_mem
instHasOfPostcompPropertyIsomorphismsOfRespectsIso 📖mathematicalHasOfPostcompProperty
isomorphisms
cancel_right_of_respectsIso
instHasOfPostcompPropertyMin 📖mathematicalHasOfPostcompProperty
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
of_postcomp
instHasOfPostcompPropertyOppositeOpOfHasOfPrecompProperty 📖mathematicalHasOfPostcompProperty
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
of_precomp
instHasOfPostcompPropertyTop 📖mathematicalHasOfPostcompProperty
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
instHasOfPostcompPropertyUnopOfHasOfPrecompPropertyOpposite 📖mathematicalHasOfPostcompProperty
unop
CategoryTheory.Category.toCategoryStruct
of_precomp
instHasOfPrecompPropertyIsomorphismsOfRespectsIso 📖mathematicalHasOfPrecompProperty
isomorphisms
cancel_left_of_respectsIso
instHasOfPrecompPropertyMin 📖mathematicalHasOfPrecompProperty
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
of_precomp
instHasOfPrecompPropertyOppositeOpOfHasOfPostcompProperty 📖mathematicalHasOfPrecompProperty
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
of_postcomp
instHasOfPrecompPropertyTop 📖mathematicalHasOfPrecompProperty
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
instHasOfPrecompPropertyUnopOfHasOfPostcompPropertyOpposite 📖mathematicalHasOfPrecompProperty
unop
CategoryTheory.Category.toCategoryStruct
of_postcomp
instHasTwoOutOfThreePropertyInverseImage 📖mathematicalHasTwoOutOfThreeProperty
inverseImage
IsStableUnderComposition.inverseImage
HasTwoOutOfThreeProperty.toIsStableUnderComposition
of_postcomp
HasTwoOutOfThreeProperty.toHasOfPostcompProperty
CategoryTheory.Functor.map_comp
of_precomp
HasTwoOutOfThreeProperty.toHasOfPrecompProperty
instHasTwoOutOfThreePropertyIsomorphisms 📖mathematicalHasTwoOutOfThreeProperty
isomorphisms
IsMultiplicative.toIsStableUnderComposition
IsMultiplicative.instIsomorphisms
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.comp_isIso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.IsIso.inv_hom_id_assoc
instHasTwoOutOfThreePropertyMin 📖mathematicalHasTwoOutOfThreeProperty
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
HasOfPostcompProperty.of_le
HasTwoOutOfThreeProperty.toHasOfPostcompProperty
inf_le_left
HasOfPrecompProperty.of_le
HasTwoOutOfThreeProperty.toHasOfPrecompProperty
inf_le_right
IsStableUnderComposition.inf
HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasOfPostcompPropertyMin
instHasOfPrecompPropertyMin
instHasTwoOutOfThreePropertyOppositeOp 📖mathematicalHasTwoOutOfThreeProperty
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
IsStableUnderComposition.op
HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasOfPostcompPropertyOppositeOpOfHasOfPrecompProperty
HasTwoOutOfThreeProperty.toHasOfPrecompProperty
instHasOfPrecompPropertyOppositeOpOfHasOfPostcompProperty
HasTwoOutOfThreeProperty.toHasOfPostcompProperty
instHasTwoOutOfThreePropertyTop 📖mathematicalHasTwoOutOfThreeProperty
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
IsMultiplicative.toIsStableUnderComposition
IsMultiplicative.instTop
instHasOfPostcompPropertyTop
instHasOfPrecompPropertyTop
instHasTwoOutOfThreePropertyUnopOfOpposite 📖mathematicalHasTwoOutOfThreeProperty
unop
CategoryTheory.Category.toCategoryStruct
IsStableUnderComposition.unop
HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasOfPostcompPropertyUnopOfHasOfPrecompPropertyOpposite
HasTwoOutOfThreeProperty.toHasOfPrecompProperty
instHasOfPrecompPropertyUnopOfHasOfPostcompPropertyOpposite
HasTwoOutOfThreeProperty.toHasOfPostcompProperty
instIsMultiplicativeMultiplicativeClosure 📖mathematicalIsMultiplicative
multiplicativeClosure
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
instIsMultiplicativeMultiplicativeClosure' 📖mathematicalIsMultiplicative
multiplicativeClosure'
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
instRespectsOfIsStableUnderComposition 📖mathematicalRespects
CategoryTheory.Category.toCategoryStruct
comp_mem
isomorphisms_le_of_containsIdentities 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
isomorphisms
of_isIso
le_multiplicativeClosure 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
multiplicativeClosure
multiplicativeClosure_eq_multiplicativeClosure' 📖mathematicalmultiplicativeClosure
multiplicativeClosure'
le_antisymm
multiplicativeClosure_le_iff
instIsMultiplicativeMultiplicativeClosure'
comp_mem
IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeMultiplicativeClosure
multiplicativeClosure_eq_self 📖mathematicalmultiplicativeClosurele_antisymm
id_mem
IsMultiplicative.toContainsIdentities
comp_mem
IsMultiplicative.toIsStableUnderComposition
le_multiplicativeClosure
multiplicativeClosure_eq_self_iff 📖mathematicalmultiplicativeClosure
IsMultiplicative
instIsMultiplicativeMultiplicativeClosure
multiplicativeClosure_eq_self
multiplicativeClosure_le_iff 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
multiplicativeClosure
LE.le.trans
le_multiplicativeClosure
id_mem
IsMultiplicative.toContainsIdentities
comp_mem
IsMultiplicative.toIsStableUnderComposition
multiplicativeClosure_monotone 📖mathematicalMonotone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
multiplicativeClosure
instIsMultiplicativeMultiplicativeClosure
LE.le.trans
le_multiplicativeClosure
of_isIso 📖RespectsIso.postcomp
id_mem
CategoryTheory.Category.id_comp
of_postcomp 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HasOfPostcompProperty.of_postcomp
of_precomp 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HasOfPrecompProperty.of_precomp
postcomp_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
of_postcomp
RespectsRight.postcomp
precomp_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
of_precomp
RespectsLeft.precomp
respectsIso_of_isStableUnderComposition 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
isomorphisms
RespectsIsocomp_mem
isomorphisms.infer_property
CategoryTheory.Iso.isIso_hom
strictMap_multiplicativeClosure_le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
strictMap
multiplicativeClosure
le_multiplicativeClosure
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp

CategoryTheory.MorphismProperty.ContainsIdentities

Theorems

NameKindAssumesProvesValidatesDepends On
eqToHom 📖mathematicalCategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom_refl
id_mem
id_mem 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
inf 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentities
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.id_mem
inverseImage 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentities
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.Functor.map_id
CategoryTheory.MorphismProperty.id_mem
of_op 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentitiesunop
of_unop 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentities
Opposite
CategoryTheory.Category.opposite
op
op 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentities
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.id_mem
unop 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentities
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.id_mem

CategoryTheory.MorphismProperty.HasOfPostcompProperty

Theorems

NameKindAssumesProvesValidatesDepends On
of_le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.HasOfPostcompPropertyCategoryTheory.MorphismProperty.of_postcomp
of_postcomp 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct

CategoryTheory.MorphismProperty.HasOfPrecompProperty

Theorems

NameKindAssumesProvesValidatesDepends On
of_le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.HasOfPrecompPropertyCategoryTheory.MorphismProperty.of_precomp
of_precomp 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct

CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty

Theorems

NameKindAssumesProvesValidatesDepends On
toHasOfPostcompProperty 📖mathematicalCategoryTheory.MorphismProperty.HasOfPostcompProperty
toHasOfPrecompProperty 📖mathematicalCategoryTheory.MorphismProperty.HasOfPrecompProperty
toIsStableUnderComposition 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition

CategoryTheory.MorphismProperty.IsMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
inf 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.ContainsIdentities.inf
toContainsIdentities
CategoryTheory.MorphismProperty.IsStableUnderComposition.inf
toIsStableUnderComposition
instEpimorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.epimorphisms
CategoryTheory.MorphismProperty.epimorphisms.infer_property
CategoryTheory.instEpiId
CategoryTheory.MorphismProperty.epimorphisms.iff
CategoryTheory.epi_comp
instInverseImage 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.ContainsIdentities.inverseImage
toContainsIdentities
CategoryTheory.MorphismProperty.IsStableUnderComposition.inverseImage
toIsStableUnderComposition
instIsomorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.MorphismProperty.isomorphisms.infer_property
CategoryTheory.IsIso.id
CategoryTheory.MorphismProperty.isomorphisms.iff
CategoryTheory.IsIso.comp_isIso
instMonomorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.MorphismProperty.monomorphisms.infer_property
CategoryTheory.instMonoId
CategoryTheory.MorphismProperty.monomorphisms.iff
CategoryTheory.mono_comp
instTop 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
naturalityProperty 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.naturalityProperty
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.MorphismProperty.naturalityProperty.isStableUnderComposition
of_op 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicativeunop
of_unop 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
Opposite
CategoryTheory.Category.opposite
op
op 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.ContainsIdentities.op
toContainsIdentities
CategoryTheory.MorphismProperty.comp_mem
toIsStableUnderComposition
toContainsIdentities 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentities
toIsStableUnderComposition 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition
unop 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.id_mem
toContainsIdentities
CategoryTheory.MorphismProperty.comp_mem
toIsStableUnderComposition

CategoryTheory.MorphismProperty.IsStableUnderComposition

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mem 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inf 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.comp_mem
inverseImage 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.Functor.map_comp
CategoryTheory.MorphismProperty.comp_mem
op 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.comp_mem
unop 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.comp_mem

CategoryTheory.MorphismProperty.Pi

Theorems

NameKindAssumesProvesValidatesDepends On
containsIdentities 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentitiesCategoryTheory.pi
CategoryTheory.MorphismProperty.pi
CategoryTheory.MorphismProperty.id_mem

CategoryTheory.MorphismProperty.Prod

Theorems

NameKindAssumesProvesValidatesDepends On
containsIdentities 📖mathematicalCategoryTheory.MorphismProperty.ContainsIdentities
CategoryTheory.prod'
CategoryTheory.MorphismProperty.prod
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.id_mem

CategoryTheory.MorphismProperty.StableUnderInverse

Theorems

NameKindAssumesProvesValidatesDepends On
op 📖mathematicalCategoryTheory.MorphismProperty.StableUnderInverseOpposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
unop 📖mathematicalCategoryTheory.MorphismProperty.StableUnderInverse
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct

CategoryTheory.MorphismProperty.naturalityProperty

Theorems

NameKindAssumesProvesValidatesDepends On
isStableUnderComposition 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition
CategoryTheory.MorphismProperty.naturalityProperty
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
stableUnderInverse 📖mathematicalCategoryTheory.MorphismProperty.StableUnderInverse
CategoryTheory.MorphismProperty.naturalityProperty
CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id

---

← Back to Index