Documentation Verification Report

Concrete

📁 Source: Mathlib/CategoryTheory/MorphismProperty/Concrete.lean

Statistics

MetricCount
DefinitionsFunctorialSurjectiveInjectiveFactorizationData, HasFunctorialSurjectiveInjectiveFactorization, HasSurjectiveInjectiveFactorization, bijective, injective, surjective, functorialSurjectiveInjectiveFactorizationData
7
Theoremsbijective_eq_sup, bijective_respectsIso, injective_respectsIso, instIsMultiplicativeBijective, instIsMultiplicativeInjective, instIsMultiplicativeSurjective, surjective_respectsIso, instHasFunctorialSurjectiveInjectiveFactorizationTypeHom
8
Total15

CategoryTheory

Definitions

NameCategoryTheorems
functorialSurjectiveInjectiveFactorizationData 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instHasFunctorialSurjectiveInjectiveFactorizationTypeHom 📖mathematicalConcreteCategory.HasFunctorialSurjectiveInjectiveFactorization
types
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Types.instFunLike
Types.instConcreteCategory

CategoryTheory.ConcreteCategory

Definitions

NameCategoryTheorems
FunctorialSurjectiveInjectiveFactorizationData 📖CompOp
HasFunctorialSurjectiveInjectiveFactorization 📖MathDef
2 mathmath: CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom, instHasFunctorialSurjectiveInjectiveFactorization
HasSurjectiveInjectiveFactorization 📖MathDef

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
bijective 📖CompOp
3 mathmath: instIsMultiplicativeBijective, bijective_respectsIso, bijective_eq_sup
injective 📖CompOp
6 mathmath: CategoryTheory.ConcreteCategory.injective_eq_monomorphisms, CategoryTheory.ConcreteCategory.injective_eq_monomorphisms_iff, bijective_eq_sup, injective_respectsIso, instIsMultiplicativeInjective, CategoryTheory.ConcreteCategory.injective_le_monomorphisms
surjective 📖CompOp
6 mathmath: bijective_eq_sup, CategoryTheory.ConcreteCategory.surjective_eq_epimorphisms_iff, CategoryTheory.ConcreteCategory.surjective_eq_epimorphisms, instIsMultiplicativeSurjective, surjective_respectsIso, CategoryTheory.ConcreteCategory.surjective_le_epimorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_eq_sup 📖mathematicalbijective
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
injective
surjective
bijective_respectsIso 📖mathematicalRespectsIso
bijective
respectsIso_of_isStableUnderComposition
IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeBijective
Equiv.bijective
injective_respectsIso 📖mathematicalRespectsIso
injective
respectsIso_of_isStableUnderComposition
IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeInjective
Equiv.injective
instIsMultiplicativeBijective 📖mathematicalIsMultiplicative
bijective
CategoryTheory.id_apply
Function.bijective_id
CategoryTheory.hom_comp
Function.Bijective.comp
instIsMultiplicativeInjective 📖mathematicalIsMultiplicative
injective
CategoryTheory.id_apply
CategoryTheory.hom_comp
instIsMultiplicativeSurjective 📖mathematicalIsMultiplicative
surjective
CategoryTheory.id_apply
CategoryTheory.hom_comp
surjective_respectsIso 📖mathematicalRespectsIso
surjective
respectsIso_of_isStableUnderComposition
IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeSurjective
Equiv.surjective

---

← Back to Index