Documentation Verification Report

Factorization

šŸ“ Source: Mathlib/CategoryTheory/MorphismProperty/Factorization.lean

Statistics

MetricCount
DefinitionsFactorizationData, FunctorialFactorizationData, Z, factorizationData, functorCategory, Z, i, mapZ, ofLE, p, HasFactorization, HasFunctorialFactorization, MapFactorizationData, Z, i, op, p, comp, factorizationData, functorialFactorizationData
20
Theoremsfac, fac_app, fac_app_assoc, fac_assoc, Z_map_app, Z_obj_map, Z_obj_obj, hi, hp, i_mapZ, i_mapZ_assoc, mapZ_comp, mapZ_comp_assoc, mapZ_id, mapZ_p, mapZ_p_assoc, nonempty_mapFactorizationData, nonempty_functorialFactorizationData, fac, fac_assoc, hi, hp, op_Z, op_i, op_p, comp_eq_top_iff, instHasFactorizationOfHasFunctorialFactorization, instHasFactorizationOppositeOp, instHasFunctorialFactorizationFunctorFunctorCategory
29
Total49

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
FactorizationData šŸ“–CompOp—
FunctorialFactorizationData šŸ“–CompData
1 mathmath: HasFunctorialFactorization.nonempty_functorialFactorizationData
HasFactorization šŸ“–CompData
12 mathmath: comp_eq_top_iff, HasFactorization.over, HomotopicalAlgebra.instHasFactorizationOppositeCofibrationsTrivialFibrationsOfTrivialCofibrationsFibrations, instHasFactorizationOppositeOp, HomotopicalAlgebra.instHasFactorizationOppositeTrivialCofibrationsFibrationsOfCofibrationsTrivialFibrations, IsWeakFactorizationSystem.hasFactorization, HomotopicalAlgebra.ModelCategory.cm5b, HomotopicalAlgebra.ModelCategory.cm5a, HomotopicalAlgebra.instHasFactorizationOverTrivialCofibrationsFibrations, HomotopicalAlgebra.instHasFactorizationOverCofibrationsTrivialFibrations, instHasFactorizationOfHasFunctorialFactorization, SimplexCategoryGenRel.instHasFactorizationP_σP_Γ
HasFunctorialFactorization šŸ“–CompData
5 mathmath: CategoryTheory.SmallObject.hasFunctorialFactorization, CategoryTheory.Sheaf.instHasFunctorialFactorizationLocallySurjectiveLocallyInjective, instHasFunctorialFactorizationLlpRlp, instHasFunctorialFactorizationFunctorFunctorCategory, CategoryTheory.IsGrothendieckAbelian.instHasFunctorialFactorizationMonomorphismsRlp
MapFactorizationData šŸ“–CompData
1 mathmath: HasFactorization.nonempty_mapFactorizationData
comp šŸ“–CompOp
1 mathmath: comp_eq_top_iff
factorizationData šŸ“–CompOp—
functorialFactorizationData šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq_top_iff šŸ“–mathematical—comp
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
instCompleteBooleanAlgebra
HasFactorization
—ext
instHasFactorizationOfHasFunctorialFactorization šŸ“–mathematical—HasFactorization——
instHasFactorizationOppositeOp šŸ“–mathematical—HasFactorization
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
——
instHasFunctorialFactorizationFunctorFunctorCategory šŸ“–mathematical—HasFunctorialFactorization
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategory
——

CategoryTheory.MorphismProperty.FunctorialFactorizationData

Definitions

NameCategoryTheorems
Z šŸ“–CompOp
12 mathmath: CategoryTheory.Sheaf.instIsLocallySurjectiveAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, hi, fac, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, CategoryTheory.Sheaf.instMonoAppArrowPLocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, CategoryTheory.SmallObject.functorialFactorizationData_Z_map, CategoryTheory.Sheaf.instIsLocallyInjectiveAppArrowPLocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, fac_app, fac_assoc, hp, fac_app_assoc, CategoryTheory.Sheaf.instEpiAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization
factorizationData šŸ“–CompOp
9 mathmath: mapZ_p, i_mapZ_assoc, functorCategory.Z_map_app, i_mapZ, functorCategory.Z_obj_obj, mapZ_p_assoc, mapZ_comp, mapZ_comp_assoc, mapZ_id
functorCategory šŸ“–CompOp—
i šŸ“–CompOp
8 mathmath: CategoryTheory.Sheaf.instIsLocallySurjectiveAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, hi, fac, CategoryTheory.SmallObject.functorialFactorizationData_i_app, fac_app, fac_assoc, fac_app_assoc, CategoryTheory.Sheaf.instEpiAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization
mapZ šŸ“–CompOp
9 mathmath: mapZ_p, i_mapZ_assoc, functorCategory.Z_map_app, functorCategory.Z_obj_map, i_mapZ, mapZ_p_assoc, mapZ_comp, mapZ_comp_assoc, mapZ_id
ofLE šŸ“–CompOp—
p šŸ“–CompOp
8 mathmath: fac, CategoryTheory.Sheaf.instMonoAppArrowPLocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, CategoryTheory.Sheaf.instIsLocallyInjectiveAppArrowPLocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, fac_app, CategoryTheory.SmallObject.functorialFactorizationData_p_app, fac_assoc, hp, fac_app_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
fac šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Arrow.leftFunc
Z
CategoryTheory.Arrow.rightFunc
i
p
CategoryTheory.Arrow.leftToRight
——
fac_app šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Arrow.leftFunc
Z
CategoryTheory.Arrow.rightFunc
CategoryTheory.NatTrans.app
i
p
CategoryTheory.Comma.hom
CategoryTheory.Functor.id
—CategoryTheory.NatTrans.comp_app
fac
CategoryTheory.Arrow.leftToRight_app
fac_app_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Arrow.leftFunc
Z
CategoryTheory.NatTrans.app
i
CategoryTheory.Arrow.rightFunc
p
CategoryTheory.Comma.hom
CategoryTheory.Functor.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac_app
fac_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Arrow.leftFunc
Z
i
CategoryTheory.Arrow.rightFunc
p
CategoryTheory.Arrow.leftToRight
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hi šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Arrow.leftFunc
Z
CategoryTheory.NatTrans.app
i
——
hp šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Z
CategoryTheory.Arrow.rightFunc
CategoryTheory.NatTrans.app
p
——
i_mapZ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.MapFactorizationData.Z
factorizationData
CategoryTheory.MorphismProperty.MapFactorizationData.i
mapZ
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
—CategoryTheory.NatTrans.naturality
i_mapZ_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.MapFactorizationData.Z
factorizationData
CategoryTheory.MorphismProperty.MapFactorizationData.i
mapZ
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
i_mapZ
mapZ_comp šŸ“–mathematical—mapZ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.MorphismProperty.MapFactorizationData.Z
factorizationData
—CategoryTheory.Functor.map_comp
mapZ_comp_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.MapFactorizationData.Z
factorizationData
mapZ
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapZ_comp
mapZ_id šŸ“–mathematical—mapZ
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.MorphismProperty.MapFactorizationData.Z
factorizationData
—CategoryTheory.Functor.map_id
mapZ_p šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.MapFactorizationData.Z
factorizationData
mapZ
CategoryTheory.MorphismProperty.MapFactorizationData.p
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
—CategoryTheory.NatTrans.naturality
mapZ_p_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.MapFactorizationData.Z
factorizationData
mapZ
CategoryTheory.MorphismProperty.MapFactorizationData.p
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapZ_p

CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory

Definitions

NameCategoryTheorems
Z šŸ“–CompOp
3 mathmath: Z_map_app, Z_obj_map, Z_obj_obj

Theorems

NameKindAssumesProvesValidatesDepends On
Z_map_app šŸ“–mathematical—CategoryTheory.NatTrans.app
CategoryTheory.MorphismProperty.MapFactorizationData.Z
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.MorphismProperty.FunctorialFactorizationData.factorizationData
CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Z
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
——
Z_obj_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.instCategoryArrow
Z
CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
——
Z_obj_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.instCategoryArrow
Z
CategoryTheory.MorphismProperty.MapFactorizationData.Z
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.MorphismProperty.FunctorialFactorizationData.factorizationData
——

CategoryTheory.MorphismProperty.HasFactorization

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_mapFactorizationData šŸ“–mathematical—CategoryTheory.MorphismProperty.MapFactorizationData——

CategoryTheory.MorphismProperty.HasFunctorialFactorization

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_functorialFactorizationData šŸ“–mathematical—CategoryTheory.MorphismProperty.FunctorialFactorizationData——

CategoryTheory.MorphismProperty.MapFactorizationData

Definitions

NameCategoryTheorems
Z šŸ“–CompOp
46 mathmath: CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p, CategoryTheory.IsGrothendieckAbelian.instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ_assoc, HomotopicalAlgebra.FibrantBrownFactorization.i_r_assoc, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, HomotopicalAlgebra.Cylinder.ofFactorizationData_iā‚€, HomotopicalAlgebra.FibrantBrownFactorization.instWeakEquivalenceR, HomotopicalAlgebra.Cylinder.ofFactorizationData_i₁, HomotopicalAlgebra.CofibrantBrownFactorization.instWeakEquivalenceICofibrationsTrivialFibrations, HomotopicalAlgebra.FibrantBrownFactorization.instWeakEquivalencePTrivialCofibrationsFibrations, HomotopicalAlgebra.instFibrationPCofibrationsTrivialFibrations, HomotopicalAlgebra.instWeakEquivalenceITrivialCofibrationsFibrations, HomotopicalAlgebra.FibrantBrownFactorization.mk'_Z, HomotopicalAlgebra.Cylinder.ofFactorizationData_I, op_Z, fac, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ, HomotopicalAlgebra.PathObject.ofFactorizationData_p₁, HomotopicalAlgebra.CofibrantBrownFactorization.s_p, HomotopicalAlgebra.instCofibrationITrivialCofibrationsFibrations, op_i, fac_assoc, HomotopicalAlgebra.FibrantBrownFactorization.fibration_r, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_obj, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p_assoc, HomotopicalAlgebra.PathObject.ofFactorizationData_P, HomotopicalAlgebra.CofibrantBrownFactorization.cofibration_s, HomotopicalAlgebra.CofibrantBrownFactorization.mk'_s, HomotopicalAlgebra.instFibrationPTrivialCofibrationsFibrations, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, HomotopicalAlgebra.CofibrantBrownFactorization.s_p_assoc, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_comp, HomotopicalAlgebra.FibrantBrownFactorization.mk'_r, HomotopicalAlgebra.instWeakEquivalencePCofibrationsTrivialFibrations, HomotopicalAlgebra.PathObject.ofFactorizationData_pā‚€, HomotopicalAlgebra.CofibrantBrownFactorization.mk'_Z, HomotopicalAlgebra.instCofibrationICofibrationsTrivialFibrations, HomotopicalAlgebra.FibrantBrownFactorization.mk'_p, hi, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_comp_assoc, HomotopicalAlgebra.CofibrantBrownFactorization.instWeakEquivalenceS, HomotopicalAlgebra.FibrantBrownFactorization.i_r, hp, op_p, HomotopicalAlgebra.CofibrantBrownFactorization.mk'_i, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_id
i šŸ“–CompOp
21 mathmath: CategoryTheory.IsGrothendieckAbelian.instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ_assoc, HomotopicalAlgebra.FibrantBrownFactorization.i_r_assoc, HomotopicalAlgebra.Cylinder.ofFactorizationData_iā‚€, HomotopicalAlgebra.Cylinder.ofFactorizationData_i₁, HomotopicalAlgebra.FibrantBrownFactorization.mk'_i, HomotopicalAlgebra.CofibrantBrownFactorization.instWeakEquivalenceICofibrationsTrivialFibrations, HomotopicalAlgebra.instWeakEquivalenceITrivialCofibrationsFibrations, HomotopicalAlgebra.Cylinder.ofFactorizationData_i, fac, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ, HomotopicalAlgebra.instCofibrationITrivialCofibrationsFibrations, op_i, fac_assoc, HomotopicalAlgebra.CofibrantBrownFactorization.mk'_s, HomotopicalAlgebra.instCofibrationICofibrationsTrivialFibrations, HomotopicalAlgebra.PathObject.ofFactorizationData_ι, hi, HomotopicalAlgebra.FibrantBrownFactorization.i_r, op_p, HomotopicalAlgebra.CofibrantBrownFactorization.mk'_i
op šŸ“–CompOp
3 mathmath: op_Z, op_i, op_p
p šŸ“–CompOp
20 mathmath: CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p, HomotopicalAlgebra.FibrantBrownFactorization.instWeakEquivalencePTrivialCofibrationsFibrations, HomotopicalAlgebra.instFibrationPCofibrationsTrivialFibrations, HomotopicalAlgebra.PathObject.ofFactorizationData_p, fac, HomotopicalAlgebra.PathObject.ofFactorizationData_p₁, HomotopicalAlgebra.CofibrantBrownFactorization.s_p, op_i, fac_assoc, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p_assoc, HomotopicalAlgebra.Cylinder.ofFactorizationData_Ļ€, HomotopicalAlgebra.instFibrationPTrivialCofibrationsFibrations, HomotopicalAlgebra.CofibrantBrownFactorization.mk'_p, HomotopicalAlgebra.CofibrantBrownFactorization.s_p_assoc, HomotopicalAlgebra.FibrantBrownFactorization.mk'_r, HomotopicalAlgebra.instWeakEquivalencePCofibrationsTrivialFibrations, HomotopicalAlgebra.PathObject.ofFactorizationData_pā‚€, HomotopicalAlgebra.FibrantBrownFactorization.mk'_p, hp, op_p

Theorems

NameKindAssumesProvesValidatesDepends On
fac šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Z
i
p
——
fac_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Z
i
p
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hi šŸ“–mathematical—Z
i
——
hp šŸ“–mathematical—Z
p
——
op_Z šŸ“–mathematical—Z
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
op
——
op_i šŸ“–mathematical—i
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
op
Z
p
——
op_p šŸ“–mathematical—p
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
op
Z
i
——

---

← Back to Index