Documentation Verification Report

LiftingProperty

📁 Source: Mathlib/CategoryTheory/MorphismProperty/LiftingProperty.lean

Statistics

MetricCount
Definitionsllp, rlp
2
Theoremsantitone_llp, antitone_rlp, colimitsOfShape_discrete_le_llp_rlp, coproducts_le_llp_rlp, gc_llp_rlp, le_llp_iff_le_rlp, le_llp_rlp, llp_isMultiplicative, llp_isStableUnderCobaseChange, llp_isStableUnderCoproductsOfShape, llp_isStableUnderRetracts, llp_of_isIso, llp_rlp_llp, pushouts_le_llp_rlp, retracts_le_llp_rlp, rlp_coproducts, rlp_isMultiplicative, rlp_isStableUnderBaseChange, rlp_isStableUnderProductsOfShape, rlp_isStableUnderRetracts, rlp_llp_rlp, rlp_of_isIso, rlp_pushouts, rlp_retracts
24
Total26

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
llp 📖CompOp
40 mathmath: CategoryTheory.SmallObject.hasFunctorialFactorization, CategoryTheory.projective_iff_llp_epimorphisms_of_isZero, llp_of_isIso, llp_isStableUnderRetracts, CategoryTheory.SmallObject.functorialFactorizationData_i_app, isStableUnderTransfiniteCompositionOfShape_llp, transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, colimitsOfShape_discrete_le_llp_rlp, IsWeakFactorizationSystem.llp, llp_isStableUnderCobaseChange, llp_isStableUnderCoproductsOfShape, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, instHasFunctorialFactorizationLlpRlp, CategoryTheory.SmallObject.llp_rlp_ιObj, llp_rlp_of_hasSmallObjectArgument, CategoryTheory.projective_iff_llp_epimorphisms_zero, gc_llp_rlp, retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument, HomotopicalAlgebra.trivialFibrations_llp, llp_isMultiplicative, le_llp_rlp, le_llp_iff_le_rlp, rlp_llp_rlp, HomotopicalAlgebra.fibrations_llp, CategoryTheory.IsGrothendieckAbelian.llp_rlp_monomorphisms, CategoryTheory.SmallObject.functorialFactorizationData_Z_map, coproducts_le_llp_rlp, transfiniteCompositionsOfShape_le_llp_rlp, llp_rlp_of_hasSmallObjectArgument', retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, retracts_le_llp_rlp, antitone_llp, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', llp_rlp_llp, transfiniteCompositions_pushouts_coproducts_le_llp_rlp, pushouts_le_llp_rlp, llp_eq_of_wfs, CategoryTheory.SmallObject.functorialFactorizationData_p_app, transfiniteCompositions_le_llp_rlp
rlp 📖CompOp
49 mathmath: CategoryTheory.IsGrothendieckAbelian.instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp, CategoryTheory.SmallObject.hasFunctorialFactorization, rlp_coproducts, rlp_retracts, CategoryTheory.SmallObject.functorialFactorizationData_i_app, SSet.modelCategoryQuillen.fibrations_eq, transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, colimitsOfShape_discrete_le_llp_rlp, rlp_isStableUnderBaseChange, rlp_isStableUnderProductsOfShape, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, instHasFunctorialFactorizationLlpRlp, CategoryTheory.SmallObject.llp_rlp_ιObj, llp_rlp_of_hasSmallObjectArgument, rlp_isMultiplicative, rlp_eq_of_wfs, gc_llp_rlp, retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument, rlp_of_isIso, antitone_rlp, le_llp_rlp, le_llp_iff_le_rlp, rlp_llp_rlp, rlp_pushouts, CategoryTheory.IsGrothendieckAbelian.llp_rlp_monomorphisms, CategoryTheory.SmallObject.functorialFactorizationData_Z_map, coproducts_le_llp_rlp, CategoryTheory.injective_iff_rlp_monomorphisms_of_isZero, transfiniteCompositionsOfShape_le_llp_rlp, llp_rlp_of_hasSmallObjectArgument', retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, CategoryTheory.SmallObject.rlp_πObj, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, HomotopicalAlgebra.trivialCofibrations_rlp, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_rlp, HomotopicalAlgebra.cofibrations_rlp, retracts_le_llp_rlp, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', llp_rlp_llp, CategoryTheory.IsGrothendieckAbelian.instHasFunctorialFactorizationMonomorphismsRlp, rlp_isStableUnderRetracts, transfiniteCompositions_pushouts_coproducts_le_llp_rlp, pushouts_le_llp_rlp, CategoryTheory.SmallObject.functorialFactorizationData_p_app, SSet.modelCategoryQuillen.fibration_iff, IsWeakFactorizationSystem.rlp, CategoryTheory.injective_iff_rlp_monomorphisms_zero, transfiniteCompositions_le_llp_rlp

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_llp 📖mathematicalAntitone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
llp
GaloisConnection.monotone_l
gc_llp_rlp
antitone_rlp 📖mathematicalAntitone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
rlp
GaloisConnection.monotone_u
gc_llp_rlp
colimitsOfShape_discrete_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
colimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
llp
rlp
colimitsOfShape_le
llp_isStableUnderCoproductsOfShape
colimitsOfShape_monotone
le_llp_rlp
coproducts_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
coproducts
llp
rlp
coproducts_iff
colimitsOfShape_discrete_le_llp_rlp
gc_llp_rlp 📖mathematicalGaloisConnection
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
OrderDual
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
llp
rlp
OrderDual.ofDual
le_llp_iff_le_rlp
le_llp_iff_le_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
llp
rlp
le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
llp
rlp
le_llp_iff_le_rlp
le_refl
llp_isMultiplicative 📖mathematicalIsMultiplicative
llp
CategoryTheory.HasLiftingProperty.of_left_iso
CategoryTheory.IsIso.id
CategoryTheory.HasLiftingProperty.of_comp_left
llp_isStableUnderCobaseChange 📖mathematicalIsStableUnderCobaseChange
llp
CategoryTheory.IsPushout.hasLiftingProperty
llp_isStableUnderCoproductsOfShape 📖mathematicalIsStableUnderCoproductsOfShape
llp
instRespectsIsoOfIsStableUnderRetracts
llp_isStableUnderRetracts
CategoryTheory.instHasLiftingPropertyMap_1
llp_isStableUnderRetracts 📖mathematicalIsStableUnderRetracts
llp
CategoryTheory.RetractArrow.leftLiftingProperty
llp_of_isIso 📖mathematicalllpCategoryTheory.HasLiftingProperty.of_left_iso
llp_rlp_llp 📖mathematicalllp
rlp
GaloisConnection.l_u_l_eq_l
gc_llp_rlp
pushouts_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
pushouts
llp
rlp
isStableUnderCobaseChange_iff_pushouts_le
llp_isStableUnderCobaseChange
pushouts_monotone
le_llp_rlp
retracts_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts
llp
rlp
le_trans
retracts_monotone
le_llp_rlp
retracts_le
llp_isStableUnderRetracts
rlp_coproducts 📖mathematicalrlp
coproducts
le_antisymm
antitone_rlp
le_coproducts
le_llp_iff_le_rlp
coproducts_le_llp_rlp
rlp_isMultiplicative 📖mathematicalIsMultiplicative
rlp
CategoryTheory.HasLiftingProperty.of_right_iso
CategoryTheory.IsIso.id
CategoryTheory.HasLiftingProperty.of_comp_right
rlp_isStableUnderBaseChange 📖mathematicalIsStableUnderBaseChange
rlp
CategoryTheory.IsPullback.hasLiftingProperty
rlp_isStableUnderProductsOfShape 📖mathematicalIsStableUnderProductsOfShape
rlp
instRespectsIsoOfIsStableUnderRetracts
rlp_isStableUnderRetracts
CategoryTheory.instHasLiftingPropertyMap
rlp_isStableUnderRetracts 📖mathematicalIsStableUnderRetracts
rlp
CategoryTheory.RetractArrow.rightLiftingProperty
rlp_llp_rlp 📖mathematicalrlp
llp
GaloisConnection.u_l_u_eq_u
gc_llp_rlp
rlp_of_isIso 📖mathematicalrlpCategoryTheory.HasLiftingProperty.of_right_iso
rlp_pushouts 📖mathematicalrlp
pushouts
le_antisymm
antitone_rlp
le_pushouts
le_llp_iff_le_rlp
pushouts_le_llp_rlp
rlp_retracts 📖mathematicalrlp
retracts
le_antisymm
antitone_rlp
le_retracts
le_llp_iff_le_rlp
retracts_le_llp_rlp

---

← Back to Index