Documentation Verification Report

Representable

šŸ“ Source: Mathlib/CategoryTheory/MorphismProperty/Representable.lean

Statistics

MetricCount
DefinitionsrelativelyRepresentable, fst, fst', lift', liftā‚ƒ, pullback, pullbackā‚ƒ, p₁, pā‚‚, pā‚ƒ, Ļ€, snd, symmetry, symmetryIso, presheaf, relative
16
Theoremsdiag_iff, diag_of_map_from_obj, hom_ext, hom_ext', hom_ext'_iff, hom_ext_iff, instIsIsoSymmetryOfFaithful, isMultiplicative, isPullback, isPullback', isPullback_of_map, isStableUnderBaseChange, isomorphisms_le, lift'_fst, lift'_fst_assoc, lift'_snd, lift'_snd_assoc, lift_fst, lift_fst_assoc, lift_snd, lift_snd_assoc, liftā‚ƒ_p₁, liftā‚ƒ_p₁_assoc, liftā‚ƒ_pā‚‚, liftā‚ƒ_pā‚‚_assoc, liftā‚ƒ_pā‚ƒ, liftā‚ƒ_pā‚ƒ_assoc, map, map_fst', of_diag, of_isIso, fst_fst'_eq_p₁, fst_fst'_eq_p₁_assoc, fst_snd_eq_pā‚‚, fst_snd_eq_pā‚‚_assoc, hom_ext, hom_ext_iff, map_p₁_comp, map_p₁_comp_assoc, map_pā‚‚_comp, map_pā‚‚_comp_assoc, map_pā‚ƒ_comp, map_pā‚ƒ_comp_assoc, snd_fst'_eq_p₁, snd_fst'_eq_p₁_assoc, snd_snd_eq_pā‚ƒ, snd_snd_eq_pā‚ƒ_assoc, respectsIso, symmetryIso_hom, symmetryIso_inv, symmetry_fst, symmetry_fst_assoc, symmetry_snd, symmetry_snd_assoc, symmetry_symmetry, symmetry_symmetry_assoc, toPullbackTerminal, w, w', w'_assoc, w_assoc, fst'_self_eq_snd, isIso_fst'_self, of_relative_map, presheaf_mono_of_le, presheaf_monomorphisms_le_monomorphisms, of_exists, property, property_snd, rep, relative_isMultiplicative, relative_isStableUnderBaseChange, relative_isStableUnderComposition, relative_map, relative_map_iff, relative_monotone, relative_of_snd, relative_respectsIso
78
Total94

CategoryTheory.Functor

Definitions

NameCategoryTheorems
relativelyRepresentable šŸ“–CompOp
9 mathmath: relativelyRepresentable.isStableUnderBaseChange, relativelyRepresentable.respectsIso, relativelyRepresentable.isomorphisms_le, relativelyRepresentable.isMultiplicative, relativelyRepresentable.map, relativelyRepresentable.diag_iff, relativelyRepresentable.of_isIso, relativelyRepresentable.toPullbackTerminal, CategoryTheory.MorphismProperty.relative.rep

CategoryTheory.Functor.relativelyRepresentable

Definitions

NameCategoryTheorems
fst šŸ“–CompOp
7 mathmath: lift_fst, hom_ext_iff, lift_fst_assoc, map_fst', isPullback, w_assoc, w
fst' šŸ“–CompOp
24 mathmath: pullbackā‚ƒ.snd_fst'_eq_p₁, CategoryTheory.MorphismProperty.isIso_fst'_self, pullbackā‚ƒ.snd_snd_eq_pā‚ƒ_assoc, lift'_fst, CategoryTheory.MorphismProperty.fst'_self_eq_snd, map_fst', symmetry_fst, pullbackā‚ƒ.snd_snd_eq_pā‚ƒ, w'_assoc, pullbackā‚ƒ.fst_snd_eq_pā‚‚_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_f, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', w', lift'_fst_assoc, symmetry_snd_assoc, symmetry_fst_assoc, pullbackā‚ƒ.fst_fst'_eq_p₁_assoc, hom_ext'_iff, pullbackā‚ƒ.fst_snd_eq_pā‚‚, pullbackā‚ƒ.fst_fst'_eq_p₁, isPullback', pullbackā‚ƒ.snd_fst'_eq_p₁_assoc, symmetry_snd, isPullback_of_map
lift' šŸ“–CompOp
4 mathmath: lift'_fst, lift'_fst_assoc, lift'_snd_assoc, lift'_snd
liftā‚ƒ šŸ“–CompOp
7 mathmath: liftā‚ƒ_p₁_assoc, liftā‚ƒ_pā‚ƒ, liftā‚ƒ_p₁, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', liftā‚ƒ_pā‚‚_assoc, liftā‚ƒ_pā‚ƒ_assoc, liftā‚ƒ_pā‚‚
pullback šŸ“–CompOp
39 mathmath: pullbackā‚ƒ.snd_fst'_eq_p₁, lift_fst, CategoryTheory.MorphismProperty.isIso_fst'_self, symmetry_symmetry, pullbackā‚ƒ.snd_snd_eq_pā‚ƒ_assoc, lift'_fst, lift_snd, CategoryTheory.MorphismProperty.relative.property_snd, hom_ext_iff, lift_snd_assoc, symmetryIso_hom, lift_fst_assoc, map_fst', symmetry_symmetry_assoc, symmetry_fst, isPullback, pullbackā‚ƒ.snd_snd_eq_pā‚ƒ, w'_assoc, pullbackā‚ƒ.fst_snd_eq_pā‚‚_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_V, w_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', w', lift'_fst_assoc, instIsIsoSymmetryOfFaithful, symmetry_snd_assoc, symmetry_fst_assoc, pullbackā‚ƒ.fst_fst'_eq_p₁_assoc, hom_ext'_iff, pullbackā‚ƒ.fst_snd_eq_pā‚‚, pullbackā‚ƒ.fst_fst'_eq_p₁, symmetryIso_inv, w, isPullback', pullbackā‚ƒ.snd_fst'_eq_p₁_assoc, symmetry_snd, lift'_snd_assoc, isPullback_of_map, lift'_snd
pullbackā‚ƒ šŸ“–CompOp
13 mathmath: pullbackā‚ƒ.map_pā‚ƒ_comp, liftā‚ƒ_p₁_assoc, pullbackā‚ƒ.map_p₁_comp, liftā‚ƒ_pā‚ƒ, liftā‚ƒ_p₁, pullbackā‚ƒ.map_p₁_comp_assoc, pullbackā‚ƒ.hom_ext_iff, pullbackā‚ƒ.map_pā‚‚_comp_assoc, pullbackā‚ƒ.map_pā‚‚_comp, liftā‚ƒ_pā‚‚_assoc, pullbackā‚ƒ.map_pā‚ƒ_comp_assoc, liftā‚ƒ_pā‚ƒ_assoc, liftā‚ƒ_pā‚‚
snd šŸ“–CompOp
23 mathmath: pullbackā‚ƒ.snd_snd_eq_pā‚ƒ_assoc, lift_snd, CategoryTheory.MorphismProperty.relative.property_snd, hom_ext_iff, lift_snd_assoc, CategoryTheory.MorphismProperty.fst'_self_eq_snd, symmetry_fst, isPullback, pullbackā‚ƒ.snd_snd_eq_pā‚ƒ, w'_assoc, pullbackā‚ƒ.fst_snd_eq_pā‚‚_assoc, w_assoc, w', symmetry_snd_assoc, symmetry_fst_assoc, hom_ext'_iff, pullbackā‚ƒ.fst_snd_eq_pā‚‚, w, isPullback', symmetry_snd, lift'_snd_assoc, isPullback_of_map, lift'_snd
symmetry šŸ“–CompOp
10 mathmath: symmetry_symmetry, symmetryIso_hom, symmetry_symmetry_assoc, symmetry_fst, instIsIsoSymmetryOfFaithful, symmetry_snd_assoc, symmetry_fst_assoc, symmetryIso_inv, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t, symmetry_snd
symmetryIso šŸ“–CompOp
2 mathmath: symmetryIso_hom, symmetryIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
diag_iff šŸ“–mathematical—CategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
CategoryTheory.Functor.obj
—CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
of_diag
diag_of_map_from_obj
diag_of_map_from_obj šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
—CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Limits.limit.lift_Ļ€
CategoryTheory.Category.assoc
prodIsoPullback_inv_fst
prodIsoPullback_inv_snd
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.of_iso_pullback
CategoryTheory.Limits.pullback.condition
CategoryTheory.CommSq.w
CategoryTheory.Limits.terminal.comp_from
toPullbackTerminal
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Limits.limit.lift_Ļ€_assoc
CategoryTheory.Category.id_comp
CategoryTheory.IsPullback.toCommSq
CategoryTheory.IsPullback.flip
CategoryTheory.Functor.map_preimage
CategoryTheory.IsPullback.of_isLimit
CategoryTheory.IsPullback.isLimit'
CategoryTheory.MorphismProperty.RespectsRight.postcomp
CategoryTheory.MorphismProperty.Respects.toRespectsRight
respectsIso
CategoryTheory.Iso.isIso_inv
hom_ext šŸ“–ā€”CategoryTheory.Functor.relativelyRepresentable
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
fst
snd
——CategoryTheory.Functor.map_injective
CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext
isPullback
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.congr_map
hom_ext' šŸ“–ā€”CategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
fst'
snd
——hom_ext
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.congr_map
hom_ext'_iff šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
fst'
snd
—hom_ext'
hom_ext_iff šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentableCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.map
fst
snd
—hom_ext
instIsIsoSymmetryOfFaithful šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.IsIso
pullback
symmetry
—CategoryTheory.Iso.isIso_hom
isMultiplicative šŸ“–mathematical—CategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.Functor.relativelyRepresentable
—of_isIso
CategoryTheory.IsIso.id
CategoryTheory.Functor.map_comp
CategoryTheory.IsPullback.paste_vert
isPullback
isPullback šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentableCategoryTheory.IsPullback
CategoryTheory.Functor.obj
pullback
fst
CategoryTheory.Functor.map
snd
——
isPullback' šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.IsPullback
pullback
CategoryTheory.Functor.map
fst'
snd
—isPullback
map_fst'
isPullback_of_map šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.IsPullback
pullback
fst'
snd
—CategoryTheory.IsPullback.of_map
CategoryTheory.Limits.reflectsLimit_of_reflectsLimitsOfShape
CategoryTheory.Limits.reflectsLimitsOfShape_of_reflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
w'
isPullback'
isStableUnderBaseChange šŸ“–mathematical—CategoryTheory.MorphismProperty.IsStableUnderBaseChange
CategoryTheory.Functor.relativelyRepresentable
—CategoryTheory.Category.assoc
w
CategoryTheory.IsPullback.of_right'
isPullback
isomorphisms_le šŸ“–mathematical—CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor.relativelyRepresentable
—of_isIso
lift'_fst šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullback
lift'
fst'
—CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_preimage
lift_fst
lift'_fst_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullback
lift'
fst'
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift'_fst
lift'_snd šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullback
lift'
snd
—lift_snd
lift'_snd_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullback
lift'
snd
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift'_snd
lift_fst šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
pullback
lift
fst
—isPullback
CategoryTheory.Functor.map_preimage
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst
lift_fst_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
pullback
lift
fst
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_fst
lift_snd šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
pullback
lift
snd
—CategoryTheory.Functor.map_injective
isPullback
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_preimage
CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd
lift_snd_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
pullback
lift
snd
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_snd
liftā‚ƒ_p₁ šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullbackā‚ƒ
liftā‚ƒ
pullbackā‚ƒ.p₁
—CategoryTheory.Limits.limit.lift_Ļ€_assoc
lift'_fst
liftā‚ƒ_p₁_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullbackā‚ƒ
liftā‚ƒ
pullbackā‚ƒ.p₁
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftā‚ƒ_p₁
liftā‚ƒ_pā‚‚ šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullbackā‚ƒ
liftā‚ƒ
pullbackā‚ƒ.pā‚‚
—CategoryTheory.Limits.limit.lift_Ļ€_assoc
lift'_snd
liftā‚ƒ_pā‚‚_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullbackā‚ƒ
liftā‚ƒ
pullbackā‚ƒ.pā‚‚
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftā‚ƒ_pā‚‚
liftā‚ƒ_pā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullbackā‚ƒ
liftā‚ƒ
pullbackā‚ƒ.pā‚ƒ
—CategoryTheory.Limits.limit.lift_Ļ€_assoc
lift'_snd
liftā‚ƒ_pā‚ƒ_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
pullbackā‚ƒ
liftā‚ƒ
pullbackā‚ƒ.pā‚ƒ
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftā‚ƒ_pā‚ƒ
map šŸ“–mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—CategoryTheory.Functor.map_surjective
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.map_isPullback
CategoryTheory.IsPullback.of_hasPullback
map_fst' šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
pullback
fst'
fst
—CategoryTheory.Functor.map_preimage
of_diag šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
CategoryTheory.Functor.obj—CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.pullback_map_diagonal_isPullback
CategoryTheory.CommSq.w
CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Limits.limit.lift_Ļ€
CategoryTheory.Category.assoc
prodIsoPullback_inv_fst
prodIsoPullback_inv_snd
CategoryTheory.IsPullback.toCommSq
CategoryTheory.Limits.terminal.comp_from
CategoryTheory.IsPullback.of_vert_isIso_mono
CategoryTheory.Iso.isIso_hom
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.prod.map_fst
prodIsoPullback_inv_fst_assoc
CategoryTheory.Limits.limit.lift_Ļ€_assoc
CategoryTheory.Limits.prod.map_snd
prodIsoPullback_inv_snd_assoc
CategoryTheory.IsPullback.isLimit'
CategoryTheory.IsPullback.of_iso_pullback
CategoryTheory.Limits.pullback.condition
CategoryTheory.Functor.map_preimage
of_isIso šŸ“–mathematical—CategoryTheory.Functor.relativelyRepresentable—CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
respectsIso šŸ“–mathematical—CategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.Functor.relativelyRepresentable
—CategoryTheory.MorphismProperty.IsStableUnderBaseChange.respectsIso
isStableUnderBaseChange
symmetryIso_hom šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
pullback
symmetryIso
symmetry
——
symmetryIso_inv šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
pullback
symmetryIso
symmetry
——
symmetry_fst šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
symmetry
fst'
snd
—lift'_fst
symmetry_fst_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
symmetry
fst'
snd
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
symmetry_fst
symmetry_snd šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
symmetry
snd
fst'
—lift'_snd
symmetry_snd_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
symmetry
snd
fst'
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
symmetry_snd
symmetry_symmetry šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
symmetry
CategoryTheory.CategoryStruct.id
—hom_ext'
CategoryTheory.Category.assoc
symmetry_fst
symmetry_snd
CategoryTheory.Category.id_comp
symmetry_symmetry_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
symmetry
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
symmetry_symmetry
toPullbackTerminal šŸ“–mathematical—CategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Limits.pullback
CategoryTheory.Limits.terminal
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.terminal.from
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Limits.pullback.lift
CategoryTheory.CategoryStruct.id
—CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Limits.terminal.comp_from
CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.assoc
CategoryTheory.MorphismProperty.RespectsRight.postcomp
CategoryTheory.MorphismProperty.Respects.toRespectsRight
respectsIso
CategoryTheory.Iso.isIso_inv
map
CategoryTheory.Functor.map_preimage
w šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentableCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
fst
CategoryTheory.Functor.map
snd
—CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
isPullback
w' šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
fst'
snd
—CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_preimage
w
w'_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback
fst'
snd
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w'
w_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentableCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
pullback
fst
CategoryTheory.Functor.map
snd
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ

Definitions

NameCategoryTheorems
p₁ šŸ“–CompOp
10 mathmath: snd_fst'_eq_p₁, CategoryTheory.Functor.relativelyRepresentable.liftā‚ƒ_p₁_assoc, map_p₁_comp, CategoryTheory.Functor.relativelyRepresentable.liftā‚ƒ_p₁, map_p₁_comp_assoc, hom_ext_iff, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', fst_fst'_eq_p₁_assoc, fst_fst'_eq_p₁, snd_fst'_eq_p₁_assoc
pā‚‚ šŸ“–CompOp
8 mathmath: hom_ext_iff, fst_snd_eq_pā‚‚_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', map_pā‚‚_comp_assoc, map_pā‚‚_comp, CategoryTheory.Functor.relativelyRepresentable.liftā‚ƒ_pā‚‚_assoc, fst_snd_eq_pā‚‚, CategoryTheory.Functor.relativelyRepresentable.liftā‚ƒ_pā‚‚
pā‚ƒ šŸ“–CompOp
8 mathmath: map_pā‚ƒ_comp, snd_snd_eq_pā‚ƒ_assoc, CategoryTheory.Functor.relativelyRepresentable.liftā‚ƒ_pā‚ƒ, snd_snd_eq_pā‚ƒ, hom_ext_iff, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', map_pā‚ƒ_comp_assoc, CategoryTheory.Functor.relativelyRepresentable.liftā‚ƒ_pā‚ƒ_assoc
Ļ€ šŸ“–CompOp
6 mathmath: map_pā‚ƒ_comp, map_p₁_comp, map_p₁_comp_assoc, map_pā‚‚_comp_assoc, map_pā‚‚_comp, map_pā‚ƒ_comp_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
fst_fst'_eq_p₁ šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.fst
p₁
——
fst_fst'_eq_p₁_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.fst
p₁
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fst_fst'_eq_p₁
fst_snd_eq_pā‚‚ šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.fst
CategoryTheory.Functor.relativelyRepresentable.snd
pā‚‚
——
fst_snd_eq_pā‚‚_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.fst
CategoryTheory.Functor.relativelyRepresentable.snd
pā‚‚
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fst_snd_eq_pā‚‚
hom_ext šŸ“–ā€”CategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
p₁
pā‚‚
pā‚ƒ
——CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Functor.relativelyRepresentable.hom_ext'
CategoryTheory.Category.assoc
snd_fst'_eq_p₁
hom_ext_iff šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
p₁
pā‚‚
pā‚ƒ
—hom_ext
map_p₁_comp šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
CategoryTheory.Functor.map
p₁
Ļ€
——
map_p₁_comp_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
CategoryTheory.Functor.map
p₁
Ļ€
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_p₁_comp
map_pā‚‚_comp šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
CategoryTheory.Functor.map
pā‚‚
Ļ€
—CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.relativelyRepresentable.w
CategoryTheory.Functor.map_preimage
map_pā‚‚_comp_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
CategoryTheory.Functor.map
pā‚‚
Ļ€
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_pā‚‚_comp
map_pā‚ƒ_comp šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
CategoryTheory.Functor.map
pā‚ƒ
Ļ€
—CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.relativelyRepresentable.w
CategoryTheory.Limits.pullback.condition
CategoryTheory.Functor.map_preimage
map_pā‚ƒ_comp_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.relativelyRepresentable.pullbackā‚ƒ
CategoryTheory.Functor.map
pā‚ƒ
Ļ€
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_pā‚ƒ_comp
snd_fst'_eq_p₁ šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.snd
p₁
—CategoryTheory.Limits.pullback.condition
snd_fst'_eq_p₁_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.snd
p₁
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
snd_fst'_eq_p₁
snd_snd_eq_pā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.snd
CategoryTheory.Functor.relativelyRepresentable.snd
pā‚ƒ
——
snd_snd_eq_pā‚ƒ_assoc šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Limits.pullback.snd
CategoryTheory.Functor.relativelyRepresentable.snd
pā‚ƒ
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
snd_snd_eq_pā‚ƒ

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
presheaf šŸ“–CompOp
1 mathmath: presheaf_monomorphisms_le_monomorphisms
relative šŸ“–CompOp
9 mathmath: relative_respectsIso, relative_isStableUnderBaseChange, relative_isStableUnderComposition, relative_map_iff, relative_map, relative_monotone, relative.of_exists, relative_isMultiplicative, relative_of_snd

Theorems

NameKindAssumesProvesValidatesDepends On
fst'_self_eq_snd šŸ“–mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
monomorphisms
presheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.relativelyRepresentable.fst'
relative.rep
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.Functor.relativelyRepresentable.snd
—presheaf_mono_of_le
CategoryTheory.Functor.map_injective
relative.rep
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.cancel_mono
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.Functor.relativelyRepresentable.isPullback'
isIso_fst'_self šŸ“–mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
monomorphisms
presheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.IsIso
CategoryTheory.Functor.relativelyRepresentable.pullback
relative.rep
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Yoneda.yoneda_full
—presheaf_mono_of_le
relative.rep
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.IsPullback.isIso_fst_of_mono
CategoryTheory.Functor.relativelyRepresentable.isPullback'
CategoryTheory.Functor.FullyFaithful.isIso_of_isIso_map
of_relative_map šŸ“–ā€”relative
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
——relative.property
CategoryTheory.IsPullback.id_horiz
presheaf_mono_of_le šŸ“–mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
monomorphisms
presheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Mono—presheaf_monomorphisms_le_monomorphisms
relative_monotone
presheaf_monomorphisms_le_monomorphisms šŸ“–mathematical—CategoryTheory.MorphismProperty
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
presheaf
monomorphisms
—relative.rep
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Yoneda.yoneda_full
relative.property_snd
CategoryTheory.cancel_mono
CategoryTheory.Functor.relativelyRepresentable.lift_snd
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.Functor.relativelyRepresentable.lift_fst
CategoryTheory.eq_whisker
CategoryTheory.Functor.congr_map
CategoryTheory.hom_ext_yoneda
CategoryTheory.Category.assoc
relative_isMultiplicative šŸ“–mathematical—IsMultiplicative
relative
—relative.of_exists
CategoryTheory.Functor.map_id
CategoryTheory.IsPullback.of_id_snd
id_mem
IsMultiplicative.toContainsIdentities
relative_isStableUnderComposition
IsMultiplicative.toIsStableUnderComposition
relative_isStableUnderBaseChange šŸ“–mathematical—IsStableUnderBaseChange
relative
—of_isPullback
CategoryTheory.Functor.relativelyRepresentable.isStableUnderBaseChange
relative.rep
relative.property
CategoryTheory.IsPullback.paste_horiz
relative_isStableUnderComposition šŸ“–mathematical—IsStableUnderComposition
relative
—comp_mem
IsMultiplicative.toIsStableUnderComposition
CategoryTheory.Functor.relativelyRepresentable.isMultiplicative
CategoryTheory.Category.assoc
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.Functor.relativelyRepresentable.lift_snd
relative.property
CategoryTheory.IsPullback.of_bot
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.relativelyRepresentable.lift_fst
CategoryTheory.Functor.relativelyRepresentable.isPullback
relative.property_snd
relative_map šŸ“–mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
relative
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—relative.of_exists
IsStableUnderBaseChange.respectsIso
CategoryTheory.Functor.map_surjective
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.IsPullback.map
CategoryTheory.IsPullback.of_hasPullback
pullback_snd
instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
relative_map_iff šŸ“–mathematical—relative
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—of_relative_map
relative_map
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
relative_monotone šŸ“–mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
relative—relative.rep
relative.property
relative_of_snd šŸ“–mathematicalCategoryTheory.Functor.relativelyRepresentable
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.snd
relative—relative.of_exists
CategoryTheory.Functor.relativelyRepresentable.isPullback
relative_respectsIso šŸ“–mathematical—RespectsIso
relative
—IsStableUnderBaseChange.respectsIso
relative_isStableUnderBaseChange

CategoryTheory.MorphismProperty.relative

Theorems

NameKindAssumesProvesValidatesDepends On
of_exists šŸ“–mathematical—CategoryTheory.MorphismProperty.relative—CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_preimage
CategoryTheory.IsPullback.isoIsPullback_hom_snd
CategoryTheory.Category.comp_id
property šŸ“–ā€”CategoryTheory.MorphismProperty.relative
CategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
———
property_snd šŸ“–mathematicalCategoryTheory.MorphismProperty.relativeCategoryTheory.Functor.relativelyRepresentable.pullback
rep
CategoryTheory.Functor.relativelyRepresentable.snd
—property
rep
CategoryTheory.Functor.relativelyRepresentable.isPullback
rep šŸ“–mathematicalCategoryTheory.MorphismProperty.relativeCategoryTheory.Functor.relativelyRepresentable——

---

← Back to Index