Documentation Verification Report

Retract

📁 Source: Mathlib/CategoryTheory/MorphismProperty/Retract.lean

Statistics

MetricCount
DefinitionsIsStableUnderRetracts, retracts
2
Theoremsepimorphisms, isomorphisms, monomorphisms, of_retract, instIsStableUnderRetractsInverseImage, instIsStableUnderRetractsMin, instIsStableUnderRetractsOppositeOp, instIsStableUnderRetractsUnopOfOpposite, instRespectsIsoOfIsStableUnderRetracts, isStableUnderRetracts_iff, isStableUnderRetracts_iff_retracts_le, le_retracts, of_retract, retracts_le, retracts_le_iff, retracts_monotone
16
Total18

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
IsStableUnderRetracts 📖CompData
27 mathmath: CategoryTheory.ObjectProperty.instIsStableUnderRetractsIsoModSerre, isStableUnderRetracts_iff, HomologicalComplex.instIsStableUnderRetractsQuasiIso, llp_isStableUnderRetracts, HomotopicalAlgebra.instIsStableUnderRetractsOverFibrations, isStableUnderRetracts_iff_retracts_le, HomotopicalAlgebra.ModelCategory.cm3b, HomotopicalAlgebra.ModelCategory.cm3c, instIsStableUnderRetractsUnopOfOpposite, HomotopicalAlgebra.instIsStableUnderRetractsOverCofibrations, instIsStableUnderRetractsMin, instIsStableUnderRetractsInverseImage, CategoryTheory.ObjectProperty.instIsStableUnderRetractsEpiModSerre, IsStableUnderRetracts.epimorphisms, CategoryTheory.ObjectProperty.instIsStableUnderRetractsMonoModSerre, HomotopicalAlgebra.instIsStableUnderRetractsOppositeWeakEquivalences, HomotopicalAlgebra.ModelCategory.cm3a, IsStableUnderRetracts.isomorphisms, HomotopicalAlgebra.instIsStableUnderRetractsTrivialCofibrationsOfCofibrationsOfWeakEquivalences, HomotopicalAlgebra.instIsStableUnderRetractsOppositeFibrationsOfCofibrations, instIsStableUnderRetractsFunctorFunctorCategory, rlp_isStableUnderRetracts, HomotopicalAlgebra.instIsStableUnderRetractsOppositeCofibrationsOfFibrations, instIsStableUnderRetractsOppositeOp, HomotopicalAlgebra.instIsStableUnderRetractsTrivialFibrationsOfFibrationsOfWeakEquivalences, IsStableUnderRetracts.monomorphisms, HomotopicalAlgebra.instIsStableUnderRetractsOverWeakEquivalences
retracts 📖CompOp
13 mathmath: rlp_retracts, isStableUnderRetracts_iff_retracts_le, retracts_le, llp_rlp_of_hasSmallObjectArgument, retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument, le_retracts, retracts_le_iff, llp_rlp_of_hasSmallObjectArgument', retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, retracts_le_llp_rlp, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', retracts_monotone

Theorems

NameKindAssumesProvesValidatesDepends On
instIsStableUnderRetractsInverseImage 📖mathematicalIsStableUnderRetracts
inverseImage
of_retract
instIsStableUnderRetractsMin 📖mathematicalIsStableUnderRetracts
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
of_retract
instIsStableUnderRetractsOppositeOp 📖mathematicalIsStableUnderRetracts
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
of_retract
instIsStableUnderRetractsUnopOfOpposite 📖mathematicalIsStableUnderRetracts
unop
CategoryTheory.Category.toCategoryStruct
of_retract
instRespectsIsoOfIsStableUnderRetracts 📖mathematicalRespectsIsoRespectsIso.of_respects_arrow_iso
of_retract
isStableUnderRetracts_iff 📖mathematicalIsStableUnderRetracts
isStableUnderRetracts_iff_retracts_le 📖mathematicalIsStableUnderRetracts
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts
isStableUnderRetracts_iff
le_retracts 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts
CategoryTheory.Category.comp_id
of_retract 📖IsStableUnderRetracts.of_retract
retracts_le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts
isStableUnderRetracts_iff_retracts_le
retracts_le_iff 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts
le_trans
le_retracts
retracts_monotone
retracts_le
retracts_monotone 📖mathematicalMonotone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts

CategoryTheory.MorphismProperty.IsStableUnderRetracts

Theorems

NameKindAssumesProvesValidatesDepends On
epimorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderRetracts
CategoryTheory.MorphismProperty.epimorphisms
CategoryTheory.cancel_epi
CategoryTheory.Arrow.epi_right
CategoryTheory.IsSplitEpi.epi
CategoryTheory.Retract.instIsSplitEpiR
CategoryTheory.Category.assoc
CategoryTheory.RetractArrow.r_w
isomorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderRetracts
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.RetractArrow.i_w_assoc
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.RetractArrow.retract_left
CategoryTheory.Category.assoc
CategoryTheory.RetractArrow.r_w
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.RetractArrow.retract_right
monomorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderRetracts
CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.cancel_mono
CategoryTheory.Arrow.mono_left
CategoryTheory.IsSplitMono.mono
CategoryTheory.Retract.instIsSplitMonoI
CategoryTheory.Category.assoc
CategoryTheory.RetractArrow.i_w
Mathlib.Tactic.Reassoc.eq_whisker'
of_retract 📖

---

← Back to Index