Documentation Verification Report

TransfiniteComposition

📁 Source: Mathlib/CategoryTheory/MorphismProperty/TransfiniteComposition.lean

Statistics

MetricCount
DefinitionsIsStableUnderInfiniteComposition, IsStableUnderTransfiniteComposition, IsStableUnderTransfiniteCompositionOfShape, ici, id, iic, map, ofArrowIso, ofComp, ofComposableArrows, ofLE, ofMem, ofOrderIso, toTransfiniteCompositionOfShape, transfiniteCompositions, transfiniteCompositionsOfShape
16
TheoremsinstIsMultiplicative, instOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits, isStableUnderTransfiniteCompositionOfShape, shrink, shrink₀, le, of_isStableUnderColimitsOfShape, mem, mem_map_bot_le, instIsIsoAppIncl, instIsIsoMapF, isIso, map_mem, map_toTransfiniteCompositionOfShape, mem, mem_incl_app, mem_map, ofArrowIso_toTransfiniteCompositionOfShape, ofComposableArrows_F, ofComposableArrows_incl_app, ofComposableArrows_isColimit_desc, ofComposableArrows_isoBot_hom, ofComposableArrows_isoBot_inv, ofLE_toTransfiniteCompositionOfShape, instIsStableUnderTransfiniteCompositionOfShapeOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits, instRespectsIsoTransfiniteCompositionsOfShape, isStableUnderTransfiniteCompositionOfShape_iff, isStableUnderTransfiniteCompositionOfShape_iff_of_orderIso, le_transfiniteCompositions, transfiniteCompositionsOfShape_eq_of_orderIso, transfiniteCompositionsOfShape_le, transfiniteCompositionsOfShape_le_transfiniteCompositions, transfiniteCompositionsOfShape_map_of_preserves, transfiniteCompositionsOfShape_monotone, transfiniteCompositions_iff, transfiniteCompositions_le, transfiniteCompositions_le_iff, transfiniteCompositions_monotone
38
Total54

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
IsStableUnderInfiniteComposition 📖MathDef
IsStableUnderTransfiniteComposition 📖CompData
5 mathmath: IsStableUnderTransfiniteComposition.shrink₀, CategoryTheory.IsGrothendieckAbelian.instIsStableUnderTransfiniteCompositionMonomorphisms, CategoryTheory.ObjectProperty.instIsStableUnderTransfiniteCompositionIsLocal, IsStableUnderTransfiniteComposition.instOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits, IsStableUnderTransfiniteComposition.shrink
IsStableUnderTransfiniteCompositionOfShape 📖CompData
9 mathmath: instIsStableUnderTransfiniteCompositionOfShapeFunctorMonomorphismsOfHasPullbacksOfHasIterationOfShape, instIsStableUnderTransfiniteCompositionOfShapeFunctorFunctorCategoryOfHasIterationOfShape, instIsStableUnderTransfiniteCompositionOfShapeOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits, isStableUnderTransfiniteCompositionOfShape_llp, isStableUnderTransfiniteCompositionOfShape_iff_of_orderIso, IsStableUnderTransfiniteCompositionOfShape.of_isStableUnderColimitsOfShape, CategoryTheory.ObjectProperty.instIsStableUnderTransfiniteCompositionOfShapeIsLocal, isStableUnderTransfiniteCompositionOfShape_iff, IsStableUnderTransfiniteComposition.isStableUnderTransfiniteCompositionOfShape
transfiniteCompositions 📖CompOp
11 mathmath: transfiniteCompositionsOfShape_le_transfiniteCompositions, llp_rlp_of_hasSmallObjectArgument, retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument, transfiniteCompositions_le, transfiniteCompositions_pushouts_coproducts_le_llp_rlp, transfiniteCompositions_iff, transfiniteCompositions_monotone, transfiniteCompositions_le_llp_rlp, le_transfiniteCompositions, transfiniteCompositions_le_iff
transfiniteCompositionsOfShape 📖CompOp
16 mathmath: transfiniteCompositionsOfShape_eq_of_orderIso, TransfiniteCompositionOfShape.mem, transfiniteCompositionsOfShape_le_transfiniteCompositions, transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, transfiniteCompositionsOfShape_le, transfiniteCompositionsOfShape_monotone, IsStableUnderTransfiniteCompositionOfShape.le, instRespectsIsoTransfiniteCompositionsOfShape, transfiniteCompositionsOfShape_le_llp_rlp, llp_rlp_of_hasSmallObjectArgument', retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, isStableUnderTransfiniteCompositionOfShape_iff, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', CategoryTheory.SmallObject.transfiniteCompositionsOfShape_ιObj, transfiniteCompositions_iff, transfiniteCompositionsOfShape_map_of_preserves

Theorems

NameKindAssumesProvesValidatesDepends On
instIsStableUnderTransfiniteCompositionOfShapeOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits 📖mathematicalIsStableUnderTransfiniteCompositionOfShapeIsStableUnderTransfiniteCompositionOfShape.of_isStableUnderColimitsOfShape
IsStableUnderFilteredColimits.isStableUnderColimitsOfShape
CategoryTheory.isFiltered_of_directed_le_nonempty
SemilatticeSup.instIsDirectedOrder
bot_nonempty
instRespectsIsoTransfiniteCompositionsOfShape 📖mathematicalRespectsIso
transfiniteCompositionsOfShape
RespectsIso.of_respects_arrow_iso
isStableUnderTransfiniteCompositionOfShape_iff 📖mathematicalIsStableUnderTransfiniteCompositionOfShape
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositionsOfShape
isStableUnderTransfiniteCompositionOfShape_iff_of_orderIso 📖mathematicalIsStableUnderTransfiniteCompositionOfShapetransfiniteCompositionsOfShape_eq_of_orderIso
le_transfiniteCompositions 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositions
le_trans
UnivLE.small
univLE_of_max
UnivLE.self
instWellFoundedLTShrink
IsWellOrder.toIsWellFounded
Fin.Lt.isWellOrder
TransfiniteCompositionOfShape.mem
transfiniteCompositionsOfShape_le_transfiniteCompositions
transfiniteCompositionsOfShape_eq_of_orderIso 📖mathematicaltransfiniteCompositionsOfShapeext
transfiniteCompositionsOfShape_le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositionsOfShape
IsStableUnderTransfiniteCompositionOfShape.le
transfiniteCompositionsOfShape_le_transfiniteCompositions 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositionsOfShape
transfiniteCompositions
transfiniteCompositions_iff
transfiniteCompositionsOfShape_map_of_preserves 📖mathematicaltransfiniteCompositionsOfShape
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
TransfiniteCompositionOfShape.mem
transfiniteCompositionsOfShape_monotone 📖mathematicalMonotone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositionsOfShape
transfiniteCompositions_iff 📖mathematicaltransfiniteCompositions
transfiniteCompositionsOfShape
transfiniteCompositions_le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositions
transfiniteCompositions_iff
transfiniteCompositionsOfShape_le
IsStableUnderTransfiniteComposition.isStableUnderTransfiniteCompositionOfShape
transfiniteCompositions_le_iff 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositions
LE.le.trans
le_transfiniteCompositions
transfiniteCompositions_monotone
transfiniteCompositions_le
transfiniteCompositions_monotone 📖mathematicalMonotone
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositions
transfiniteCompositions_iff
transfiniteCompositionsOfShape_le_transfiniteCompositions
transfiniteCompositionsOfShape_monotone

CategoryTheory.MorphismProperty.IsStableUnderTransfiniteComposition

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMultiplicative 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicativeCategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le
IsWellOrder.toIsWellFounded
Fin.Lt.isWellOrder
isStableUnderTransfiniteCompositionOfShape
shrink₀
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.mem
instOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionCategoryTheory.MorphismProperty.instIsStableUnderTransfiniteCompositionOfShapeOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits
isStableUnderTransfiniteCompositionOfShape 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionOfShape
shrink 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionUnivLE.small
instWellFoundedLTShrink
CategoryTheory.MorphismProperty.isStableUnderTransfiniteCompositionOfShape_iff_of_orderIso
isStableUnderTransfiniteCompositionOfShape
shrink₀ 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionshrink
univLE_of_max
UnivLE.self

CategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape
of_isStableUnderColimitsOfShape 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderColimitsOfShape
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionOfShapeof_isStableUnderColimitsOfShape.mem

CategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionOfShape.of_isStableUnderColimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
mem 📖CategoryTheory.MorphismProperty.IsStableUnderColimitsOfShape
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.TransfiniteCompositionOfShape.fac
CategoryTheory.Category.comp_id
CategoryTheory.MorphismProperty.colimitsOfShape_le
CategoryTheory.MorphismProperty.colimitsOfShape.of_isColimit
mem_map_bot_le
bot_le
mem_map_bot_le 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderColimitsOfShape
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
CategoryTheory.TransfiniteCompositionOfShape.F
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.toTransfiniteCompositionOfShape
Bot.bot
OrderBot.toBot
Preorder.toLE
CategoryTheory.Functor.map
bot_le
CategoryTheory.Functor.map_id
CategoryTheory.MorphismProperty.id_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
IsMin.eq_bot
Order.le_succ
LE.le.trans
CategoryTheory.homOfLE_comp
CategoryTheory.Functor.map_comp
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.map_mem
CategoryTheory.MorphismProperty.colimitsOfShape_le
Set.ordConnected_Iio
Order.IsSuccLimit.bot_lt
Subtype.wellFoundedLT
CategoryTheory.MorphismProperty.colimitsOfShape.of_isColimit
PrincipalSeg.monotone
CategoryTheory.TransfiniteCompositionOfShape.isWellOrderContinuous

CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape

Definitions

NameCategoryTheorems
ici 📖CompOp
id 📖CompOp
iic 📖CompOp
map 📖CompOp
1 mathmath: map_toTransfiniteCompositionOfShape
ofArrowIso 📖CompOp
1 mathmath: ofArrowIso_toTransfiniteCompositionOfShape
ofComp 📖CompOp
ofComposableArrows 📖CompOp
5 mathmath: ofComposableArrows_incl_app, ofComposableArrows_isColimit_desc, ofComposableArrows_F, ofComposableArrows_isoBot_inv, ofComposableArrows_isoBot_hom
ofLE 📖CompOp
1 mathmath: ofLE_toTransfiniteCompositionOfShape
ofMem 📖CompOp
ofOrderIso 📖CompOp
toTransfiniteCompositionOfShape 📖CompOp
22 mathmath: ofComposableArrows_incl_app, ofComposableArrows_isColimit_desc, instIsIsoAppIncl, CategoryTheory.SmallObject.SuccStruct.transfiniteCompositionOfShapeιIteration_isoBot, ofLE_toTransfiniteCompositionOfShape, instIsIsoMapF, ofComposableArrows_F, CategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionOfShape.of_isStableUnderColimitsOfShape.mem_map_bot_le, CategoryTheory.SmallObject.SuccStruct.transfiniteCompositionOfShapeιIteration_incl, ofArrowIso_toTransfiniteCompositionOfShape, ofComposableArrows_isoBot_inv, map_mem, CategoryTheory.SmallObject.SuccStruct.transfiniteCompositionOfShapeιIteration_F, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right, CategoryTheory.SmallObject.transfiniteCompositionOfShapeSuccStructPropιIteration_F, map_toTransfiniteCompositionOfShape, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, ofComposableArrows_isoBot_hom, HomotopicalAlgebra.RelativeCellComplex.transfiniteCompositionOfShape_toTransfiniteCompositionOfShape, mem_map, CategoryTheory.SmallObject.SuccStruct.transfiniteCompositionOfShapeιIteration_isColimit, mem_incl_app

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoAppIncl 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.TransfiniteCompositionOfShape.F
toTransfiniteCompositionOfShape
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.TransfiniteCompositionOfShape.incl
mem_incl_app
CategoryTheory.MorphismProperty.IsStableUnderTransfiniteComposition.instOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits
CategoryTheory.MorphismProperty.IsMultiplicative.instIsomorphisms
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
CategoryTheory.MorphismProperty.instIsStableUnderFilteredColimitsIsomorphisms
instIsIsoMapF 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.TransfiniteCompositionOfShape.F
toTransfiniteCompositionOfShape
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor.map
mem_map
CategoryTheory.MorphismProperty.IsStableUnderTransfiniteComposition.instOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits
CategoryTheory.MorphismProperty.IsMultiplicative.instIsomorphisms
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
CategoryTheory.MorphismProperty.instIsStableUnderFilteredColimitsIsomorphisms
isIso 📖mathematicalCategoryTheory.IsIsoCategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le
CategoryTheory.MorphismProperty.IsStableUnderTransfiniteComposition.isStableUnderTransfiniteCompositionOfShape
CategoryTheory.MorphismProperty.IsStableUnderTransfiniteComposition.instOfIsMultiplicativeOfRespectsIsoOfIsStableUnderFilteredColimits
CategoryTheory.MorphismProperty.IsMultiplicative.instIsomorphisms
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
CategoryTheory.MorphismProperty.instIsStableUnderFilteredColimitsIsomorphisms
mem
map_mem 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.TransfiniteCompositionOfShape.F
toTransfiniteCompositionOfShape
Order.succ
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
map_toTransfiniteCompositionOfShape 📖mathematicaltoTransfiniteCompositionOfShape
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
CategoryTheory.TransfiniteCompositionOfShape.map
CategoryTheory.MorphismProperty.inverseImage
mem 📖mathematicalCategoryTheory.MorphismProperty.transfiniteCompositionsOfShape
mem_incl_app 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.TransfiniteCompositionOfShape.F
toTransfiniteCompositionOfShape
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.TransfiniteCompositionOfShape.incl
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le
Set.ordConnected_Ici
Subtype.wellFoundedLT
CategoryTheory.MorphismProperty.IsStableUnderTransfiniteComposition.isStableUnderTransfiniteCompositionOfShape
mem
mem_map 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.TransfiniteCompositionOfShape.F
toTransfiniteCompositionOfShape
CategoryTheory.Functor.map
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le
CategoryTheory.leOfHom
Set.ordConnected_Ici
Set.ordConnected_Iic
Subtype.wellFoundedLT
CategoryTheory.MorphismProperty.IsStableUnderTransfiniteComposition.isStableUnderTransfiniteCompositionOfShape
mem
bot_le
ofArrowIso_toTransfiniteCompositionOfShape 📖mathematicaltoTransfiniteCompositionOfShape
ofArrowIso
CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso
ofComposableArrows_F 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Fin.castSucc_le_succ
CategoryTheory.TransfiniteCompositionOfShape.F
Fin.instLinearOrder
HeytingAlgebra.toOrderBot
Fin.instHeytingAlgebra
CategoryTheory.ComposableArrows.left
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
Fin.instSuccOrder
IsWellOrder.toIsWellFounded
Preorder.toLT
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Fin.Lt.isWellOrder
toTransfiniteCompositionOfShape
ofComposableArrows
Fin.castSucc_le_succ
IsWellOrder.toIsWellFounded
Fin.Lt.isWellOrder
ofComposableArrows_incl_app 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Fin.castSucc_le_succ
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.TransfiniteCompositionOfShape.incl
Fin.instLinearOrder
HeytingAlgebra.toOrderBot
Fin.instHeytingAlgebra
CategoryTheory.ComposableArrows.left
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
Fin.instSuccOrder
IsWellOrder.toIsWellFounded
Preorder.toLT
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Fin.Lt.isWellOrder
toTransfiniteCompositionOfShape
ofComposableArrows
CategoryTheory.Limits.IsTerminal.from
Fin.isTerminalLast
Fin.castSucc_le_succ
IsWellOrder.toIsWellFounded
Fin.Lt.isWellOrder
ofComposableArrows_isColimit_desc 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Fin.castSucc_le_succ
CategoryTheory.Limits.IsColimit.desc
CategoryTheory.Limits.coconeOfDiagramTerminal
Fin.isTerminalLast
CategoryTheory.TransfiniteCompositionOfShape.isColimit
Fin.instLinearOrder
HeytingAlgebra.toOrderBot
Fin.instHeytingAlgebra
CategoryTheory.ComposableArrows.left
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
Fin.instSuccOrder
IsWellOrder.toIsWellFounded
Preorder.toLT
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Fin.Lt.isWellOrder
toTransfiniteCompositionOfShape
ofComposableArrows
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
Fin.castSucc_le_succ
IsWellOrder.toIsWellFounded
Fin.Lt.isWellOrder
ofComposableArrows_isoBot_hom 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Fin.castSucc_le_succ
CategoryTheory.Iso.hom
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Fin.instLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
HeytingAlgebra.toOrderBot
Fin.instHeytingAlgebra
CategoryTheory.TransfiniteCompositionOfShape.isoBot
CategoryTheory.ComposableArrows.left
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
Fin.instSuccOrder
IsWellOrder.toIsWellFounded
Preorder.toLT
Fin.Lt.isWellOrder
toTransfiniteCompositionOfShape
ofComposableArrows
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Fin.castSucc_le_succ
IsWellOrder.toIsWellFounded
Fin.Lt.isWellOrder
ofComposableArrows_isoBot_inv 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Fin.castSucc_le_succ
CategoryTheory.Iso.inv
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Fin.instLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
HeytingAlgebra.toOrderBot
Fin.instHeytingAlgebra
CategoryTheory.TransfiniteCompositionOfShape.isoBot
CategoryTheory.ComposableArrows.left
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
Fin.instSuccOrder
IsWellOrder.toIsWellFounded
Preorder.toLT
Fin.Lt.isWellOrder
toTransfiniteCompositionOfShape
ofComposableArrows
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Fin.castSucc_le_succ
IsWellOrder.toIsWellFounded
Fin.Lt.isWellOrder
ofLE_toTransfiniteCompositionOfShape 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
toTransfiniteCompositionOfShape
ofLE

---

← Back to Index