Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/ObjectProperty/Basic.lean

Statistics

MetricCount
DefinitionsIs, inverseImage, map, ofObj, pair, singleton, strictMap
7
Theoremsprop, is_iff, is_of_prop, le_def, map_monotone, ofObj_apply, ofObj_iff, ofObj_le_iff, ofObj_subtypeVal, pair_iff, prop_inverseImage_iff, prop_map_iff, prop_map_obj, prop_of_is, singleton_iff, singleton_le_iff, strictMap_iff, strictMap_le_map, strictMap_monotone, strictMap_obj, strictMap_ofObj, strictMap_singleton
22
Total29

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
Is 📖CompData
2 mathmath: is_iff, is_of_prop
inverseImage 📖CompOp
23 mathmath: CategoryTheory.CostructuredArrow.small_proj_preimage_of_locallySmall, inverseImage_trW_isInverted, instIsStableUnderShiftInverseImageOfIsClosedUnderIsomorphismsOfCommShift, instIsClosedUnderSubobjectsInverseImageOfPreservesMonomorphisms, CategoryTheory.CostructuredArrow.isSeparating_inverseImage_proj, instIsClosedUnderExtensionsInverseImageOfPreservesZeroMorphismsOfPreservesFiniteLimitsOfPreservesFiniteColimits, instIsSerreClassInverseImageOfPreservesFiniteLimitsOfPreservesFiniteColimits, CategoryTheory.StructuredArrow.small_inverseImage_proj_of_locallySmall, CategoryTheory.CostructuredArrow.isSeparating_proj_preimage, isClosedUnderLimitsOfShape_inverseImage_iff, instIsClosedUnderQuotientsInverseImageOfPreservesEpimorphisms, instContainsZeroInverseImageOfIsClosedUnderIsomorphismsOfPreservesZeroMorphismsOfHasZeroObject, IsClosedUnderLimitsOfShape.inverseImage, IsClosedUnderColimitsOfShape.inverseImage, inverseImage_trW_iff, isClosedUnderColimitsOfShape_inverseImage_iff, CategoryTheory.StructuredArrow.isCoseparating_proj_preimage, instIsTriangulatedInverseImage, prop_inverseImage_iff, CategoryTheory.StructuredArrow.isCoseparating_inverseImage_proj, CategoryTheory.CostructuredArrow.small_inverseImage_proj_of_locallySmall, instIsClosedUnderIsomorphismsInverseImage, CategoryTheory.StructuredArrow.small_proj_preimage_of_locallySmall
map 📖CompOp
14 mathmath: isoClosure_strictMap, prop_map_iff, prop_map_obj, instEssentiallySmallMap, CategoryTheory.Functor.essImage_ι_comp, map_isoClosure, strictMap_le_map, instIsClosedUnderIsomorphismsMap, ι_map_top, map_monotone, instIsTriangulatedMapOfIsTriangulatedOfFull, CategoryTheory.IsCardinalFilteredGenerator.of_isDense, CategoryTheory.Adjunction.isCardinalFilteredGenerator, instContainsZeroMapOfPreservesZeroMorphisms
ofObj 📖CompData
17 mathmath: unop_ofObj, ofObj_iff, hasCardinalLT_subtype_ofObj, CategoryTheory.isSeparator_sigma, ofObj_apply, ofObj_le_iff, op_ofObj, CategoryTheory.isSeparator_iff_of_isColimit_cofan, instSmallOfObjOfSmall, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.single_P, CategoryTheory.isCoseparator_pi, CategoryTheory.Presheaf.isStrongGenerator, ofObj_subtypeVal, CategoryTheory.Ind.isSeparating_range_yoneda, CategoryTheory.isCoseparator_iff_of_isLimit_fan, strictMap_ofObj, CategoryTheory.Functor.isStrongGenerator_of_isDense
pair 📖CompOp
4 mathmath: CategoryTheory.isSeparator_coprod, CategoryTheory.isCoseparator_prod, instSmallPair, pair_iff
singleton 📖CompOp
5 mathmath: strictMap_singleton, op_singleton, singleton_iff, singleton_le_iff, unop_singleton
strictMap 📖CompData
12 mathmath: isoClosure_strictMap, strictMap_obj, CategoryTheory.IsSeparating.of_equivalence, strictMap_singleton, CategoryTheory.IsCoseparating.of_equivalence, strictMap_le_map, strictMap_iff, IsSeparating.of_equivalence, strictMap_monotone, IsCoseparating.of_equivalence, strictMap_ofObj, instSmallStrictMap

Theorems

NameKindAssumesProvesValidatesDepends On
is_iff 📖mathematicalIs
is_of_prop 📖mathematicalIsis_iff
le_def 📖mathematicalCategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
map_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
map
ofObj_apply 📖mathematicalofObj
ofObj_iff 📖mathematicalofObj
ofObj_le_iff 📖mathematicalCategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
ofObj
ofObj_subtypeVal 📖mathematicalofObjofObj_apply
pair_iff 📖mathematicalpair
prop_inverseImage_iff 📖mathematicalinverseImage
CategoryTheory.Functor.obj
prop_map_iff 📖mathematicalmap
CategoryTheory.Iso
CategoryTheory.Functor.obj
prop_map_obj 📖mathematicalmap
CategoryTheory.Functor.obj
prop_of_is 📖is_iff
singleton_iff 📖mathematicalsingleton
singleton_le_iff 📖mathematicalCategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
singleton
strictMap_iff 📖mathematicalstrictMap
CategoryTheory.Functor.obj
strictMap_le_map 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictMap
map
strictMap_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictMap
strictMap_obj 📖mathematicalstrictMap
CategoryTheory.Functor.obj
strictMap_ofObj 📖mathematicalstrictMap
ofObj
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
strictMap_singleton 📖mathematicalstrictMap
singleton
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj

CategoryTheory.ObjectProperty.Is

Theorems

NameKindAssumesProvesValidatesDepends On
prop 📖

---

← Back to Index