| Name | Category | Theorems |
Is 📖 | CompData | 2 mathmath: is_iff, is_of_prop
|
inverseImage 📖 | CompOp | 23 mathmath: CategoryTheory.CostructuredArrow.small_proj_preimage_of_locallySmall, inverseImage_trW_isInverted, instIsStableUnderShiftInverseImageOfIsClosedUnderIsomorphismsOfCommShift, instIsClosedUnderSubobjectsInverseImageOfPreservesMonomorphisms, CategoryTheory.CostructuredArrow.isSeparating_inverseImage_proj, instIsClosedUnderExtensionsInverseImageOfPreservesZeroMorphismsOfPreservesFiniteLimitsOfPreservesFiniteColimits, instIsSerreClassInverseImageOfPreservesFiniteLimitsOfPreservesFiniteColimits, CategoryTheory.StructuredArrow.small_inverseImage_proj_of_locallySmall, CategoryTheory.CostructuredArrow.isSeparating_proj_preimage, isClosedUnderLimitsOfShape_inverseImage_iff, instIsClosedUnderQuotientsInverseImageOfPreservesEpimorphisms, instContainsZeroInverseImageOfIsClosedUnderIsomorphismsOfPreservesZeroMorphismsOfHasZeroObject, IsClosedUnderLimitsOfShape.inverseImage, IsClosedUnderColimitsOfShape.inverseImage, inverseImage_trW_iff, isClosedUnderColimitsOfShape_inverseImage_iff, CategoryTheory.StructuredArrow.isCoseparating_proj_preimage, instIsTriangulatedInverseImage, prop_inverseImage_iff, CategoryTheory.StructuredArrow.isCoseparating_inverseImage_proj, CategoryTheory.CostructuredArrow.small_inverseImage_proj_of_locallySmall, instIsClosedUnderIsomorphismsInverseImage, CategoryTheory.StructuredArrow.small_proj_preimage_of_locallySmall
|
map 📖 | CompOp | 14 mathmath: isoClosure_strictMap, prop_map_iff, prop_map_obj, instEssentiallySmallMap, CategoryTheory.Functor.essImage_ι_comp, map_isoClosure, strictMap_le_map, instIsClosedUnderIsomorphismsMap, ι_map_top, map_monotone, instIsTriangulatedMapOfIsTriangulatedOfFull, CategoryTheory.IsCardinalFilteredGenerator.of_isDense, CategoryTheory.Adjunction.isCardinalFilteredGenerator, instContainsZeroMapOfPreservesZeroMorphisms
|
ofObj 📖 | CompData | 17 mathmath: unop_ofObj, ofObj_iff, hasCardinalLT_subtype_ofObj, CategoryTheory.isSeparator_sigma, ofObj_apply, ofObj_le_iff, op_ofObj, CategoryTheory.isSeparator_iff_of_isColimit_cofan, instSmallOfObjOfSmall, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.single_P, CategoryTheory.isCoseparator_pi, CategoryTheory.Presheaf.isStrongGenerator, ofObj_subtypeVal, CategoryTheory.Ind.isSeparating_range_yoneda, CategoryTheory.isCoseparator_iff_of_isLimit_fan, strictMap_ofObj, CategoryTheory.Functor.isStrongGenerator_of_isDense
|
pair 📖 | CompOp | 4 mathmath: CategoryTheory.isSeparator_coprod, CategoryTheory.isCoseparator_prod, instSmallPair, pair_iff
|
singleton 📖 | CompOp | 5 mathmath: strictMap_singleton, op_singleton, singleton_iff, singleton_le_iff, unop_singleton
|
strictMap 📖 | CompData | 12 mathmath: isoClosure_strictMap, strictMap_obj, CategoryTheory.IsSeparating.of_equivalence, strictMap_singleton, CategoryTheory.IsCoseparating.of_equivalence, strictMap_le_map, strictMap_iff, IsSeparating.of_equivalence, strictMap_monotone, IsCoseparating.of_equivalence, strictMap_ofObj, instSmallStrictMap
|