Documentation Verification Report

ClosedUnderIsomorphisms

📁 Source: Mathlib/CategoryTheory/ObjectProperty/ClosedUnderIsomorphisms.lean

Statistics

MetricCount
DefinitionsIsClosedUnderIsomorphisms, isoClosure
2
Theoremsof_iso, instIsClosedUnderIsomorphismsInverseImage, instIsClosedUnderIsomorphismsIsoClosure, instIsClosedUnderIsomorphismsMap, isClosedUnderIsomorphisms_iff_isoClosure_eq_self, isoClosure_eq_self, isoClosure_le_iff, isoClosure_strictMap, le_isoClosure, map_isoClosure, monotone_isoClosure, prop_iff_of_isIso, prop_iff_of_iso, prop_isoClosure, prop_isoClosure_iff, prop_of_isIso, prop_of_iso
17
Total19

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
IsClosedUnderIsomorphisms 📖CompData
48 mathmath: instIsClosedUnderIsomorphismsMin, instIsClosedUnderIsomorphismsColimitsOfShape, CategoryTheory.MorphismProperty.instIsClosedUnderIsomorphismsIsColocal, IsClosedUnderIsomorphisms.of_inheritedFromSource, CategoryTheory.MorphismProperty.instIsClosedUnderIsomorphismsUnderUnderObjOfRespectsIso, IsLocal.toIsClosedUnderIsomorphisms, isClosedUnderIsomorphisms_iff_isoClosure_eq_self, CategoryTheory.instIsClosedUnderIsomorphismsIsCardinalPresentable, instIsClosedUnderIsomorphismsRightOrthogonal, instIsClosedUnderIsomorphisms_1, instIsClosedUnderIsomorphismsColimitsClosure, AlgebraicGeometry.instIsClosedUnderIsomorphismsSchemeIrreducibleSpaceCarrierCarrierCommRingCat, instIsClosedUnderIsomorphismsOppositeOp, CategoryTheory.Triangulated.TStructure.instIsClosedUnderIsomorphismsMinus, CategoryTheory.Triangulated.TStructure.instIsClosedUnderIsomorphismsPlus, instIsClosedUnderIsomorphismsLimitsOfShape, instIsClosedUnderIsomorphismsColimitsCardinalClosure, CategoryTheory.Triangulated.TStructure.instIsClosedUnderIsomorphismsBounded, CategoryTheory.MorphismProperty.instIsClosedUnderIsomorphismsOverOverObjOfRespectsIso, CategoryTheory.Functor.instIsClosedUnderIsomorphismsHomologicalKernel, instIsClosedUnderIsomorphisms, instIsClosedUnderIsomorphismsMax, instIsClosedUnderIsomorphismsShift, instIsClosedUnderIsomorphismsUnopOfOpposite, CategoryTheory.MorphismProperty.instIsClosedUnderIsomorphismsStructuredArrowStructuredArrowObjOfRespectsIso, AlgebraicGeometry.Scheme.isClosedUnderIsomorphisms_quasiCompactCover, CategoryTheory.Triangulated.TStructure.ge_isClosedUnderIsomorphisms, CategoryTheory.Functor.LeftExtension.instIsClosedUnderIsomorphismsIsPointwiseLeftKanExtensionAt, CategoryTheory.Limits.IsIndObject.instIsClosedUnderIsomorphismsFunctorOppositeType, CategoryTheory.MorphismProperty.instIsClosedUnderIsomorphismsIsLocal, instIsClosedUnderIsomorphismsMap, CategoryTheory.MorphismProperty.instIsClosedUnderIsomorphismsCostructuredArrowCostructuredArrowObjOfRespectsIso, instIsClosedUnderIsomorphismsInd, CategoryTheory.Functor.RightExtension.instIsClosedUnderIsomorphismsIsPointwiseRightKanExtensionAt, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, CategoryTheory.Triangulated.TStructure.le_isClosedUnderIsomorphisms, instIsClosedUnderIsomorphismsTop, IsClosedUnderBinaryProducts.closedUnderIsomorphisms, instIsClosedUnderIsomorphismsIsoClosure, CategoryTheory.Functor.instIsClosedUnderIsomorphismsEssImage, CategoryTheory.Functor.instIsClosedUnderIsomorphismsIsDenseAt, instIsClosedUnderIsomorphismsShiftClosure, CategoryTheory.MorphismProperty.instIsClosedUnderIsomorphismsCommaCommaObjOfRespectsIso, IsClosedUnderIsomorphisms.of_inheritedFromTarget, instIsClosedUnderIsomorphismsLeftOrthogonal, instIsClosedUnderIsomorphismsLimitsClosure, HomotopyCategory.instIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic, instIsClosedUnderIsomorphismsInverseImage
isoClosure 📖CompOp
47 mathmath: isoClosure_strictMap, instIsTriangulatedIsoClosure, prop_isoClosure_iff, EssentiallySmall.exists_small, ext_of_isTriangulatedClosed₃', le_isoClosure, IsTriangulatedClosed₂.ext₂', limitsOfShape_isoClosure, unop_isoClosure, isClosedUnderIsomorphisms_iff_isoClosure_eq_self, EssentiallySmall.exists_small_le', colimitsOfShape_isoClosure, isoClosure_isColocal, IsTriangulatedClosed₁.ext₁', isoClosure_iSup, IsCardinalFilteredGenerator.isoClosure_iff, map_isoClosure, isoClosure_strictColimitsOfShape, colimitsClosure_isoClosure, monotone_isoClosure, IsCardinalFilteredGenerator.isoClosure, isoClosure_le_iff, isoClosure_strictLimitsClosureIter_eq_limitsClosure, prop_isoClosure, limitsClosure_isoClosure, EssentiallySmall.exists_small_le, instIsEquivalenceFullSubcategoryIsoClosureιOfLE, isoClosure_strictLimitsOfShape, ι_map_top, instIsStableUnderShiftByIsoClosure, instContainsZeroIsoClosure, isoClosure_sup, CategoryTheory.Localization.LeftBousfield.W_isoClosure, IsTriangulatedClosed₃.ext₃', retractClosure_isoClosure, instEssentiallySmallIsoClosure, op_isoClosure, instIsStableUnderShiftIsoClosure, instIsClosedUnderIsomorphismsIsoClosure, ext_of_isTriangulatedClosed₂', ext_of_isTriangulatedClosed₁', trW_isoClosure, instIsTriangulatedClosed₂IsoClosure, isoClosure_eq_self, isEquivalence_ιOfLE_iff, isoClosure_isLocal, essSurj_ιOfLE_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instIsClosedUnderIsomorphismsInverseImage 📖mathematical—IsClosedUnderIsomorphisms
inverseImage
—prop_of_iso
instIsClosedUnderIsomorphismsIsoClosure 📖mathematical—IsClosedUnderIsomorphisms
isoClosure
——
instIsClosedUnderIsomorphismsMap 📖mathematical—IsClosedUnderIsomorphisms
map
——
isClosedUnderIsomorphisms_iff_isoClosure_eq_self 📖mathematical—IsClosedUnderIsomorphisms
isoClosure
—isoClosure_eq_self
instIsClosedUnderIsomorphismsIsoClosure
isoClosure_eq_self 📖mathematical—isoClosure—le_antisymm
prop_of_iso
le_isoClosure
isoClosure_le_iff 📖mathematical—CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
isoClosure
—LE.le.trans
le_isoClosure
monotone_isoClosure
isoClosure_eq_self
le_refl
isoClosure_strictMap 📖mathematical—isoClosure
strictMap
map
—le_antisymm
isoClosure_le_iff
instIsClosedUnderIsomorphismsMap
strictMap_le_map
le_isoClosure 📖mathematical—CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
isoClosure
——
map_isoClosure 📖mathematical—map
isoClosure
—le_antisymm
map_monotone
le_isoClosure
monotone_isoClosure 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
isoClosure——
prop_iff_of_isIso 📖————prop_iff_of_iso
prop_iff_of_iso 📖————prop_of_iso
prop_isoClosure 📖mathematical—isoClosure——
prop_isoClosure_iff 📖mathematical—isoClosure
CategoryTheory.Iso
——
prop_of_isIso 📖————prop_of_iso
prop_of_iso 📖————IsClosedUnderIsomorphisms.of_iso

CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
of_iso 📖—————

---

← Back to Index