Documentation Verification Report

ColimitsCardinalClosure

📁 Source: Mathlib/CategoryTheory/ObjectProperty/ColimitsCardinalClosure.lean

Statistics

MetricCount
DefinitionscolimitsCardinalClosure
1
TheoremscolimitsCardinalClosure_le, instEssentiallySmallColimitsCardinalClosureOfLocallySmall, instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, instIsClosedUnderIsomorphismsColimitsCardinalClosure, isClosedUnderColimitsOfShape_colimitsCardinalClosure, isStableUnderRetracts_colimitsCardinalClosure, le_colimitsCardinalClosure
7
Total8

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
colimitsCardinalClosure 📖CompOp
12 mathmath: colimitsCardinalClosure_le_isCardinalPresentable, instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, instIsClosedUnderIsomorphismsColimitsCardinalClosure, instEssentiallySmallColimitsCardinalClosureOfLocallySmall, isStableUnderRetracts_colimitsCardinalClosure, IsStrongGenerator.isDense_colimitsCardinalClosure_ι, CategoryTheory.IsStrongGenerator.colimitsCardinalClosure_eq_isCardinalPresentable, isFiltered_costructuredArrow_colimitsCardinalClosure_ι, isClosedUnderColimitsOfShape_colimitsCardinalClosure, isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι, colimitsCardinalClosure_le, le_colimitsCardinalClosure

Theorems

NameKindAssumesProvesValidatesDepends On
colimitsCardinalClosure_le 📖mathematicalIsClosedUnderColimitsOfShape
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsCardinalClosureCategoryTheory.SmallCategoryCardinalLT.hasCardinalLT
colimitsClosure_le
instEssentiallySmallColimitsCardinalClosureOfLocallySmall 📖mathematicalEssentiallySmall
colimitsCardinalClosure
instEssentiallySmallColimitsClosureOfSmallOfLocallySmall
UnivLE.small
UnivLE.self
small_subtype
CategoryTheory.locallySmall_of_univLE
instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily 📖mathematicalIsClosedUnderColimitsOfShape
colimitsCardinalClosure
CategoryTheory.SmallCategoryCardinalLT.categoryFamily
CategoryTheory.SmallCategoryOfSet.instSmallCategoryElemObj
Ordinal.ToType
Cardinal.ord
CategoryTheory.SmallCategoryOfSet
HasCardinalLT
CategoryTheory.Arrow
Set.Elem
CategoryTheory.SmallCategoryOfSet.obj
instIsClosedUnderColimitsOfShapeColimitsClosure
instIsClosedUnderIsomorphismsColimitsCardinalClosure 📖mathematicalIsClosedUnderIsomorphisms
colimitsCardinalClosure
instIsClosedUnderIsomorphismsColimitsClosure
isClosedUnderColimitsOfShape_colimitsCardinalClosure 📖mathematicalHasCardinalLT
CategoryTheory.Arrow
IsClosedUnderColimitsOfShape
colimitsCardinalClosure
CategoryTheory.SmallCategoryCardinalLT.exists_equivalence
isClosedUnderColimitsOfShape_iff_of_equivalence
instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily
isStableUnderRetracts_colimitsCardinalClosure 📖mathematicalIsStableUnderRetracts
colimitsCardinalClosure
isClosedUnderColimitsOfShape_colimitsCardinalClosure
HasCardinalLT.of_le
CategoryTheory.Arrow.finite
Cardinal.IsRegular.aleph0_le
Fact.out
instIsStableUnderRetractsOfIsClosedUnderColimitsOfShapeWalkingParallelPair
le_colimitsCardinalClosure 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsCardinalClosure
le_colimitsClosure

---

← Back to Index