📁 Source: Mathlib/CategoryTheory/ObjectProperty/ColimitsCardinalClosure.lean
colimitsCardinalClosure
colimitsCardinalClosure_le
instEssentiallySmallColimitsCardinalClosureOfLocallySmall
instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily
instIsClosedUnderIsomorphismsColimitsCardinalClosure
isClosedUnderColimitsOfShape_colimitsCardinalClosure
isStableUnderRetracts_colimitsCardinalClosure
le_colimitsCardinalClosure
colimitsCardinalClosure_le_isCardinalPresentable
IsStrongGenerator.isDense_colimitsCardinalClosure_ι
CategoryTheory.IsStrongGenerator.colimitsCardinalClosure_eq_isCardinalPresentable
isFiltered_costructuredArrow_colimitsCardinalClosure_ι
isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι
IsClosedUnderColimitsOfShape
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.SmallCategoryCardinalLT.hasCardinalLT
colimitsClosure_le
EssentiallySmall
instEssentiallySmallColimitsClosureOfSmallOfLocallySmall
UnivLE.small
UnivLE.self
small_subtype
CategoryTheory.locallySmall_of_univLE
CategoryTheory.SmallCategoryCardinalLT.categoryFamily
CategoryTheory.SmallCategoryOfSet.instSmallCategoryElemObj
Ordinal.ToType
Cardinal.ord
CategoryTheory.SmallCategoryOfSet
HasCardinalLT
CategoryTheory.Arrow
Set.Elem
CategoryTheory.SmallCategoryOfSet.obj
instIsClosedUnderColimitsOfShapeColimitsClosure
IsClosedUnderIsomorphisms
instIsClosedUnderIsomorphismsColimitsClosure
CategoryTheory.SmallCategoryCardinalLT.exists_equivalence
isClosedUnderColimitsOfShape_iff_of_equivalence
IsStableUnderRetracts
HasCardinalLT.of_le
CategoryTheory.Arrow.finite
Cardinal.IsRegular.aleph0_le
Fact.out
instIsStableUnderRetractsOfIsClosedUnderColimitsOfShapeWalkingParallelPair
le_colimitsClosure
---
← Back to Index