Documentation Verification Report

ColimitsClosure

📁 Source: Mathlib/CategoryTheory/ObjectProperty/ColimitsClosure.lean

Statistics

MetricCount
DefinitionscolimitsClosure
1
TheoremscolimitsClosure_eq_unop_limitsClosure, colimitsClosure_isoClosure, colimitsClosure_le, colimitsClosure_monotone, instEssentiallySmallColimitsClosureOfSmallOfLocallySmall, instIsClosedUnderColimitsOfShapeColimitsClosure, instIsClosedUnderIsomorphismsColimitsClosure, le_colimitsClosure
8
Total9

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
colimitsClosure 📖CompData
8 mathmath: instIsClosedUnderColimitsOfShapeColimitsClosure, instIsClosedUnderIsomorphismsColimitsClosure, colimitsClosure_isoClosure, instEssentiallySmallColimitsClosureOfSmallOfLocallySmall, le_colimitsClosure, colimitsClosure_eq_unop_limitsClosure, colimitsClosure_le, colimitsClosure_monotone

Theorems

NameKindAssumesProvesValidatesDepends On
colimitsClosure_eq_unop_limitsClosure 📖mathematicalcolimitsClosure
unop
CategoryTheory.Category.toCategoryStruct
limitsClosure
Opposite
CategoryTheory.Category.opposite
op
le_antisymm
colimitsClosure_le
instIsClosedUnderIsomorphismsUnopOfOpposite
instIsClosedUnderIsomorphismsLimitsClosure
instIsClosedUnderColimitsOfShapeUnopOfIsClosedUnderLimitsOfShapeOpposite
instIsClosedUnderLimitsOfShapeLimitsClosure
op_monotone_iff
op_unop
le_limitsClosure
limitsClosure_le
instIsClosedUnderIsomorphismsOppositeOp
instIsClosedUnderIsomorphismsColimitsClosure
instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape
instIsClosedUnderColimitsOfShapeColimitsClosure
le_colimitsClosure
colimitsClosure_isoClosure 📖mathematicalcolimitsClosure
isoClosure
le_antisymm
colimitsClosure_le
instIsClosedUnderIsomorphismsColimitsClosure
instIsClosedUnderColimitsOfShapeColimitsClosure
isoClosure_le_iff
le_colimitsClosure
colimitsClosure_monotone
le_isoClosure
colimitsClosure_le 📖mathematicalIsClosedUnderColimitsOfShape
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsClosureprop_of_iso
prop_of_isColimit
colimitsClosure_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsClosurecolimitsClosure_le
instIsClosedUnderIsomorphismsColimitsClosure
instIsClosedUnderColimitsOfShapeColimitsClosure
LE.le.trans
le_colimitsClosure
instEssentiallySmallColimitsClosureOfSmallOfLocallySmall 📖mathematicalSmall
CategoryTheory.LocallySmall
EssentiallySmall
colimitsClosure
colimitsClosure_eq_unop_limitsClosure
Opposite.small
instEssentiallySmallUnopOfOpposite
instEssentiallySmallLimitsClosureOfSmallOfLocallySmall
instEssentiallySmallOppositeOp
CategoryTheory.instLocallySmallOpposite
instIsClosedUnderColimitsOfShapeColimitsClosure 📖mathematicalIsClosedUnderColimitsOfShape
colimitsClosure
ColimitOfShape.prop_diag_obj
instIsClosedUnderIsomorphismsColimitsClosure 📖mathematicalIsClosedUnderIsomorphisms
colimitsClosure
le_colimitsClosure 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsClosure

---

← Back to Index