Documentation Verification Report

ColimitsOfShape

📁 Source: Mathlib/CategoryTheory/ObjectProperty/ColimitsOfShape.lean

Statistics

MetricCount
DefinitionsClosedUnderColimitsOfShape, ColimitOfShape, colimit, ofIso, ofLE, reindex, toColimitPresentation, toCostructuredArrow, IsClosedUnderColimitsOfShape, colimitsOfShape, strictColimitsOfShape
11
Theoremscolimit, closedUnderColimitsOfShape_of_colimit, colimit_toColimitPresentation, colimitsOfShape, ofIso_toColimitPresentation, ofLE_toColimitPresentation, prop, prop_diag_obj, reindex_toColimitPresentation, toCostructuredArrow_map, toCostructuredArrow_obj, colimitsOfShape_le, inverseImage, mk', of_equivalence, colimitsOfShape_congr, colimitsOfShape_eq_unop_limitsOfShape, colimitsOfShape_isoClosure, colimitsOfShape_le_of_final, colimitsOfShape_monotone, colimitsOfShape_op, instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape, instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape_1, instIsClosedUnderColimitsOfShapeUnopOfIsClosedUnderLimitsOfShapeOpposite, instIsClosedUnderColimitsOfShapeUnopOppositeOfIsClosedUnderLimitsOfShape, instIsClosedUnderIsomorphismsColimitsOfShape, instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape, instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape_1, instIsClosedUnderLimitsOfShapeUnopOfIsClosedUnderColimitsOfShapeOpposite, instIsClosedUnderLimitsOfShapeUnopOppositeOfIsClosedUnderColimitsOfShape, instIsStableUnderRetractsOfIsClosedUnderColimitsOfShapeWalkingParallelPair, instSmallStrictColimitsOfShapeOfSmallOfLocallySmall, isClosedUnderColimitsOfShape_iff, isClosedUnderColimitsOfShape_iff_of_equivalence, isClosedUnderColimitsOfShape_iff_op, isClosedUnderColimitsOfShape_iff_unop, isClosedUnderColimitsOfShape_inverseImage_iff, isClosedUnderColimitsOfShape_op_iff_op, isClosedUnderColimitsOfShape_op_iff_unop, isClosedUnderLimitsOfShape_iff_op, isClosedUnderLimitsOfShape_iff_unop, isClosedUnderLimitsOfShape_op_iff_op, isClosedUnderLimitsOfShape_op_iff_unop, isoClosure_strictColimitsOfShape, limitsOfShape_eq_unop_colimitsOfShape, limitsOfShape_op, prop_colimit, prop_of_isColimit, strictColimitsOfShape_le_colimitsOfShape, strictColimitsOfShape_monotone
50
Total61

CategoryTheory.Limits

Definitions

NameCategoryTheorems
ClosedUnderColimitsOfShape 📖MathDef

Theorems

NameKindAssumesProvesValidatesDepends On
closedUnderColimitsOfShape_of_colimit 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.strictColimitsOfShape
CategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShapeCategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape.mk'

CategoryTheory.Limits.ClosedUnderColimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
colimit 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Limits.colimitCategoryTheory.ObjectProperty.prop_colimit

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
ColimitOfShape 📖CompData
IsClosedUnderColimitsOfShape 📖CompData
32 mathmath: isClosedUnderColimitsOfShape_iff_op, instIsClosedUnderColimitsOfShapeColimitsClosure, instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape, IsClosedUnderColimitsOfShape.of_equivalence, instIsClosedUnderColimitsOfShapeUnopOppositeOfIsClosedUnderLimitsOfShape, isClosedUnderLimitsOfShape_op_iff_unop, instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, CategoryTheory.Limits.closedUnderColimitsOfShape_of_colimit, CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, instIsClosedUnderColimitsOfShapeUnopOfIsClosedUnderLimitsOfShapeOpposite, isClosedUnderColimitsOfShape_iff, isClosedUnderColimitsOfShape_op_iff_unop, isClosedUnderColimitsOfShape_of_preservesColimitsOfShape_ι, CategoryTheory.Limits.instIsClosedUnderColimitsOfShapeEssImageOfHasColimitsOfShapeOfPreservesColimitsOfShapeOfFullOfFaithful, IsClosedUnderColimitsOfShape.inverseImage, instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape_1, isClosedUnderColimitsOfShape_iff_of_equivalence, isClosedUnderColimitsOfShape_op_iff_op, isClosedUnderLimitsOfShape_op_iff_op, isClosedUnderColimitsOfShape_colimitsCardinalClosure, isClosedUnderColimitsOfShape_iff_unop, CategoryTheory.CostructuredArrow.isClosedUnderColimitsOfShape, CategoryTheory.isClosedUnderColimitsOfShape_isCardinalPresentable, isClosedUnderColimitsOfShape_inverseImage_iff, CategoryTheory.MorphismProperty.isClosedUnderColimitsOfShape_isLocal, IsClosedUnderColimitsOfShape.mk', instIsClosedUnderColimitsOfShapeFunctorPreservesFiniteLimitsOfHasExactColimitsOfShape, CategoryTheory.MorphismProperty.instIsClosedUnderColimitsOfShapeIsColocal, isClosedUnderLimitsOfShape_iff_unop, isClosedUnderLimitsOfShape_iff_op, instIsClosedUnderColimitsOfShapeFunctorPreservesLimitsOfShapeOfPreservesLimitsOfShapeColim, CategoryTheory.instIsClosedUnderColimitsOfShapeFunctorOppositeTypeIsIndObjectOfIsFiltered
colimitsOfShape 📖CompOp
15 mathmath: colimitsOfShape_op, instIsClosedUnderIsomorphismsColimitsOfShape, IsClosedUnderColimitsOfShape.colimitsOfShape_le, limitsOfShape_op, colimitsOfShape_le_of_final, colimitsOfShape_isoClosure, isoClosure_strictColimitsOfShape, isClosedUnderColimitsOfShape_iff, limitsOfShape_eq_unop_colimitsOfShape, colimitsOfShape_monotone, ColimitOfShape.colimitsOfShape, IsCardinalFilteredGenerator.exists_colimitsOfShape, colimitsOfShape_eq_unop_limitsOfShape, strictColimitsOfShape_le_colimitsOfShape, colimitsOfShape_congr
strictColimitsOfShape 📖CompData
4 mathmath: strictColimitsOfShape_monotone, isoClosure_strictColimitsOfShape, instSmallStrictColimitsOfShapeOfSmallOfLocallySmall, strictColimitsOfShape_le_colimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
colimitsOfShape_congr 📖mathematicalcolimitsOfShapele_antisymm
colimitsOfShape_le_of_final
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Equivalence.isEquivalence_functor
colimitsOfShape_eq_unop_limitsOfShape 📖mathematicalcolimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
limitsOfShape
Opposite
CategoryTheory.Category.opposite
op
ColimitOfShape.prop_diag_obj
LimitOfShape.prop_diag_obj
colimitsOfShape_isoClosure 📖mathematicalcolimitsOfShape
isoClosure
le_antisymm
ColimitOfShape.prop_diag_obj
colimitsOfShape_monotone
le_isoClosure
colimitsOfShape_le_of_final 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsOfShape
colimitsOfShape_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsOfShape
colimitsOfShape_op 📖mathematicalcolimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
limitsOfShape
limitsOfShape_eq_unop_colimitsOfShape
op_unop
colimitsOfShape_congr
instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape 📖mathematicalIsClosedUnderColimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderLimitsOfShape_iff_op
instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape_1 📖mathematicalIsClosedUnderColimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderLimitsOfShape_op_iff_op
instIsClosedUnderColimitsOfShapeUnopOfIsClosedUnderLimitsOfShapeOpposite 📖mathematicalIsClosedUnderColimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
isClosedUnderLimitsOfShape_op_iff_unop
instIsClosedUnderColimitsOfShapeUnopOppositeOfIsClosedUnderLimitsOfShape 📖mathematicalIsClosedUnderColimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
isClosedUnderLimitsOfShape_iff_unop
instIsClosedUnderIsomorphismsColimitsOfShape 📖mathematicalIsClosedUnderIsomorphisms
colimitsOfShape
instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape 📖mathematicalIsClosedUnderLimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_iff_op
instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape_1 📖mathematicalIsClosedUnderLimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_op_iff_op
instIsClosedUnderLimitsOfShapeUnopOfIsClosedUnderColimitsOfShapeOpposite 📖mathematicalIsClosedUnderLimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_op_iff_unop
instIsClosedUnderLimitsOfShapeUnopOppositeOfIsClosedUnderColimitsOfShape 📖mathematicalIsClosedUnderLimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
isClosedUnderColimitsOfShape_iff_unop
instIsStableUnderRetractsOfIsClosedUnderColimitsOfShapeWalkingParallelPair 📖mathematicalIsStableUnderRetractsCategoryTheory.Category.assoc
CategoryTheory.Retract.retract
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.Cofork.condition
CategoryTheory.Retract.retract_assoc
prop_of_isColimit
instSmallStrictColimitsOfShapeOfSmallOfLocallySmall 📖mathematicalSmall
strictColimitsOfShape
small_of_surjective
small_subtype
CategoryTheory.instSmallFunctorOfLocallySmall
instSmallFullSubcategoryOfSmall
CategoryTheory.locallySmall_fullSubcategory
FullSubcategory.property
isClosedUnderColimitsOfShape_iff 📖mathematicalIsClosedUnderColimitsOfShape
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
colimitsOfShape
isClosedUnderColimitsOfShape_iff_of_equivalence 📖mathematicalIsClosedUnderColimitsOfShapecolimitsOfShape_congr
isClosedUnderColimitsOfShape_iff_op 📖mathematicalIsClosedUnderColimitsOfShape
IsClosedUnderLimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_iff
isClosedUnderLimitsOfShape_iff
colimitsOfShape_eq_unop_limitsOfShape
op_monotone_iff
op_unop
isClosedUnderColimitsOfShape_iff_unop 📖mathematicalIsClosedUnderColimitsOfShape
Opposite
CategoryTheory.Category.opposite
IsClosedUnderLimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
isClosedUnderLimitsOfShape_op_iff_op
isClosedUnderColimitsOfShape_inverseImage_iff 📖mathematicalIsClosedUnderColimitsOfShape
inverseImage
CategoryTheory.Equivalence.functor
prop_iff_of_iso
IsClosedUnderColimitsOfShape.inverseImage
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Equivalence.isEquivalence_functor
isClosedUnderColimitsOfShape_op_iff_op 📖mathematicalIsClosedUnderColimitsOfShape
Opposite
CategoryTheory.Category.opposite
IsClosedUnderLimitsOfShape
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_iff
isClosedUnderLimitsOfShape_iff
limitsOfShape_op
op_monotone_iff
isClosedUnderColimitsOfShape_op_iff_unop 📖mathematicalIsClosedUnderColimitsOfShape
Opposite
CategoryTheory.Category.opposite
IsClosedUnderLimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
isClosedUnderLimitsOfShape_iff_op
isClosedUnderLimitsOfShape_iff_op 📖mathematicalIsClosedUnderLimitsOfShape
IsClosedUnderColimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_iff
isClosedUnderLimitsOfShape_iff
limitsOfShape_eq_unop_colimitsOfShape
op_monotone_iff
op_unop
isClosedUnderLimitsOfShape_iff_unop 📖mathematicalIsClosedUnderLimitsOfShape
Opposite
CategoryTheory.Category.opposite
IsClosedUnderColimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_op_iff_op
isClosedUnderLimitsOfShape_op_iff_op 📖mathematicalIsClosedUnderLimitsOfShape
Opposite
CategoryTheory.Category.opposite
IsClosedUnderColimitsOfShape
op
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_iff
isClosedUnderLimitsOfShape_iff
colimitsOfShape_op
op_monotone_iff
isClosedUnderLimitsOfShape_op_iff_unop 📖mathematicalIsClosedUnderLimitsOfShape
Opposite
CategoryTheory.Category.opposite
IsClosedUnderColimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
isClosedUnderColimitsOfShape_iff_op
isoClosure_strictColimitsOfShape 📖mathematicalisoClosure
strictColimitsOfShape
colimitsOfShape
le_antisymm
isoClosure_le_iff
instIsClosedUnderIsomorphismsColimitsOfShape
strictColimitsOfShape_le_colimitsOfShape
CategoryTheory.Limits.ColimitPresentation.hasColimit
ColimitOfShape.prop_diag_obj
limitsOfShape_eq_unop_colimitsOfShape 📖mathematicallimitsOfShape
unop
CategoryTheory.Category.toCategoryStruct
colimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
LimitOfShape.prop_diag_obj
ColimitOfShape.prop_diag_obj
limitsOfShape_op 📖mathematicallimitsOfShape
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
colimitsOfShape
colimitsOfShape_eq_unop_limitsOfShape
op_unop
limitsOfShape_congr
prop_colimit 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Limits.colimitprop_of_isColimit
prop_of_isColimit 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Limits.Cocone.ptIsClosedUnderColimitsOfShape.colimitsOfShape_le
strictColimitsOfShape_le_colimitsOfShape 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictColimitsOfShape
colimitsOfShape
strictColimitsOfShape_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictColimitsOfShape

CategoryTheory.ObjectProperty.ColimitOfShape

Definitions

NameCategoryTheorems
colimit 📖CompOp
1 mathmath: colimit_toColimitPresentation
ofIso 📖CompOp
1 mathmath: ofIso_toColimitPresentation
ofLE 📖CompOp
1 mathmath: ofLE_toColimitPresentation
reindex 📖CompOp
1 mathmath: reindex_toColimitPresentation
toColimitPresentation 📖CompOp
7 mathmath: toCostructuredArrow_obj, colimit_toColimitPresentation, prop_diag_obj, ofLE_toColimitPresentation, toCostructuredArrow_map, ofIso_toColimitPresentation, reindex_toColimitPresentation
toCostructuredArrow 📖CompOp
3 mathmath: toCostructuredArrow_obj, CategoryTheory.IsCardinalAccessibleCategory.final_toCostructuredArrow, toCostructuredArrow_map

Theorems

NameKindAssumesProvesValidatesDepends On
colimit_toColimitPresentation 📖mathematicalCategoryTheory.Functor.objtoColimitPresentation
CategoryTheory.Limits.colimit
colimit
CategoryTheory.Limits.ColimitPresentation.colimit
colimitsOfShape 📖mathematicalCategoryTheory.ObjectProperty.colimitsOfShape
ofIso_toColimitPresentation 📖mathematicaltoColimitPresentation
ofIso
CategoryTheory.Limits.ColimitPresentation.ofIso
ofLE_toColimitPresentation 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
toColimitPresentation
ofLE
prop 📖CategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape.colimitsOfShape_le
prop_diag_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.ColimitPresentation.diag
toColimitPresentation
reindex_toColimitPresentation 📖mathematicaltoColimitPresentation
reindex
CategoryTheory.Limits.ColimitPresentation.reindex
toCostructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Functor.obj
CategoryTheory.Limits.ColimitPresentation.diag
toColimitPresentation
prop_diag_obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.ColimitPresentation.ι
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
prop_diag_obj
toCostructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.Limits.ColimitPresentation.diag
toColimitPresentation
prop_diag_obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.ColimitPresentation.ι

CategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
colimitsOfShape_le 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.colimitsOfShape
inverseImage 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape
CategoryTheory.ObjectProperty.inverseImage
CategoryTheory.ObjectProperty.ColimitOfShape.prop
mk' 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.strictColimitsOfShape
CategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShapeCategoryTheory.ObjectProperty.isoClosure_eq_self
CategoryTheory.ObjectProperty.isoClosure_strictColimitsOfShape
CategoryTheory.ObjectProperty.monotone_isoClosure
of_equivalence 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShapeCategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_iff_of_equivalence

---

← Back to Index