category 📖 | CompOp | 677 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.ObjectProperty.isoMk_hom, CategoryTheory.LeftExactFunctor.ofExact_map, DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, HomotopicalAlgebra.BifibrantObject.weakEquivalence_homMk_iff, instFaithfulFGAlgCatUliftFunctor, CategoryTheory.Subobject.factors_iff, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_obj, SimplexCategory.Truncated.δ₂_two_comp_σ₂_one_assoc, CategoryTheory.Equivalence.congrFullSubcategory_inverse, instEssentiallySmallFGAlgCat, HomotopicalAlgebra.FibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, CategoryTheory.ObjectProperty.instCommShiftHomFunctorLiftCompιIso, SSet.Truncated.tensor_map_apply_snd, HomotopicalAlgebra.BifibrantObject.inverts_iff_factors, HomotopicalAlgebra.BifibrantObject.HoCat.ιCofibrantObject_obj, instEssentiallySmallFGModuleCat, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, CategoryTheory.equivEssImageOfReflective_unitIso, LinearMap.id_fgModuleCat_comp, CategoryTheory.ExactFunctor.forget_map, FDRep.char_tensor, HomotopicalAlgebra.CofibrantObject.homRel_equivalence_of_isFibrant_tgt, CategoryTheory.MonoOver.congr_unitIso, CategoryTheory.locallySmall_fullSubcategory, CategoryTheory.LeftExactFunctor.forget_map, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, FGModuleCat.hom_hom_id, CategoryTheory.MonoOver.mapIso_functor, CategoryTheory.Functor.fullSubcategoryInclusionLinear, CategoryTheory.ObjectProperty.rightUnitor_def, SSet.Truncated.mapHomotopyCategory_homMk, HomotopicalAlgebra.weakEquivalence_iff_of_objectProperty, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, comp_hom_assoc, FDRep.endRingEquiv_symm_comp_ρ, HomotopicalAlgebra.CofibrantObject.instIsLocalizedEquivalenceHoCatWeakEquivalencesToHoCatLocalizerMorphism, CategoryTheory.RightExactFunctor.whiskeringRight_obj_obj_obj, SSet.Truncated.Path.mk₂_arrow, HomotopicalAlgebra.FibrantObject.homMk_homMk, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, SimplexCategory.Truncated.δ₂_zero_comp_σ₂_zero, CategoryTheory.MonoOver.hasColimitsOfSize_of_hasStrongEpiMonoFactorisations, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, FGModuleCat.instHasColimitsOfShapeOfFinCategory, HomotopicalAlgebra.CofibrantObject.toHoCat_map_eq_iff, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceBifibrantObjectBifibrantResolutionMap, CategoryTheory.nerve.functorOfNerveMap_map, HomotopicalAlgebra.FibrantObject.instIsLocalizedEquivalenceHoCatWeakEquivalencesToHoCatLocalizerMorphism, CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, SSet.Truncated.StrictSegal.spine_spineToSimplex, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_obj_obj, CategoryTheory.MonoOver.instIsRightAdjointOverForget, HomotopicalAlgebra.BifibrantObject.homMk_id, CategoryTheory.ObjectProperty.lift_obj_obj, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_hom_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, TannakaDuality.FiniteGroup.forget_obj, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_inv_hom, CategoryTheory.ObjectProperty.tensorUnit_obj, CategoryTheory.ObjectProperty.topEquivalence_counitIso, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, CategoryTheory.ObjectProperty.lift_map, SSet.Truncated.Edge.map_fst, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorObj_obj, CategoryTheory.instIsFinitelyPresentableObjFullSubcategoryIsFinitelyPresentableι, SimplexCategory.Truncated.Hom.tr_comp, FGModuleCat.instPreservesFiniteColimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.Functor.Faithful.toEssImage, CategoryTheory.Functor.fullSubcategoryInclusion_additive, CategoryTheory.ObjectProperty.full_ιOfLE, HomotopicalAlgebra.FibrantObject.instIsLocalizationCompHoCatToHoCatWeakEquivalences, CategoryTheory.MonoOver.isoMk_inv, CategoryTheory.SimplicialObject.Truncated.whiskering_map_app_app, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, CategoryTheory.MonoOver.mapIso_unitIso, LinearMap.comp_id_fgModuleCat, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_apply, CategoryTheory.Equivalence.congrFullSubcategory_counitIso, CategoryTheory.ObjectProperty.eqToHom_hom, HomotopicalAlgebra.CofibrantObject.instFaithfulHoCatHoCatιCofibrantObject, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, SSet.Truncated.Edge.CompStruct.d₂, HomotopicalAlgebra.CofibrantObject.homMk_homMk, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_snd_hom, SimplexCategory.Truncated.δ₂_one_comp_σ₂_one, CategoryTheory.ObjectProperty.tensorHom_def, CategoryTheory.MorphismProperty.isRightAdjoint_ι_isLocal, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_symm_apply, CategoryTheory.Functor.mapContActionCongr_inv, CategoryTheory.AdditiveFunctor.ofExact_obj_fst, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac', SSet.Truncated.Path.map_arrow, HomotopicalAlgebra.FibrantObject.toHoCat_map_eq_iff, SimplexCategory.Truncated.δ₂_zero_comp_δ₂_two_assoc, CategoryTheory.MonoOver.mapIso_counitIso, instIsEquivalenceFGModuleCatUlift, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_apply, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.ObjectProperty.faithful_ι, CategoryTheory.ObjectProperty.isoHom_inv_id_hom, HomotopicalAlgebra.FibrantObject.weakEquivalence_toHoCat_map_iff, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_fst_hom, Types.monoOverEquivalenceSet_inverse_map, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, SSet.Truncated.StrictSegal.spineToSimplex_spine, CategoryTheory.RightExactFunctor.whiskeringLeft_map_app, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.ExactFunctor.forget_obj, CategoryTheory.LeftExactFunctor.forget_obj, CategoryTheory.Functor.mapContActionComp_inv, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_obj, CategoryTheory.Functor.mapGrpFunctor_obj, CategoryTheory.MonoOver.map_obj_left, CategoryTheory.ObjectProperty.ι_η, CategoryTheory.Limits.hasLimitsOfShape_of_closedUnderLimits, SSet.Truncated.HomotopyCategory₂.mk_surjective, CategoryTheory.RightExactFunctor.whiskeringRight_map_app, CategoryTheory.SimplicialObject.Truncated.trunc_obj_obj, CategoryTheory.OrthogonalReflection.isRightAdjoint_ι, CategoryTheory.Functor.mapContActionCongr_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_obj_obj, CategoryTheory.essentiallySmall_monoOver, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.Functor.mapCommGrpFunctor_obj, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, SSet.Truncated.Edge.CompStruct.tensor_simplex_snd, CategoryTheory.ObjectProperty.full_ι, HomotopicalAlgebra.FibrantObject.instHasRightResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, CategoryTheory.ObjectProperty.fullSubcategoryCongr_inverse, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.AdditiveFunctor.ofLeftExact_map, CategoryTheory.RightExactFunctor.ofExact_map_hom, CategoryTheory.LeftExactFunctor.whiskeringRight_map_app, FGModuleCat.hom_comp, HomotopicalAlgebra.BifibrantObject.toHoCat_map_eq, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_inv_hom, SimplexCategory.Truncated.Hom.tr_comp', CategoryTheory.ObjectProperty.ι_map, CategoryTheory.ObjectProperty.instAdditiveFullSubcategoryShiftFunctor, HomotopicalAlgebra.CofibrantObject.instHasLeftResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, CategoryTheory.LeftExactFunctor.whiskeringRight_obj_map, CategoryTheory.AdditiveFunctor.ofRightExact_map, SSet.Truncated.Edge.id_tensor_id, HomotopicalAlgebra.BifibrantObject.instIsIsoHoCatMapToHoCatOfWeakEquivalence, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.AdditiveFunctor.ofExact_map, ContAction.resEquiv_inverse, CategoryTheory.ObjectProperty.fullSubcategoryCongr_unitIso, FGModuleCat.FGModuleCatEvaluation_apply, HomotopicalAlgebra.BifibrantObject.instCongruenceHomRel, CategoryTheory.instFaithfulDecomposedDecomposedTo, CategoryTheory.LeftExactFunctor.whiskeringLeft_map_app, CategoryTheory.ObjectProperty.topEquivalence_unitIso, CategoryTheory.instFullDecomposedDecomposedTo, CategoryTheory.IsCardinalAccessibleCategory.final_toCostructuredArrow, FGModuleCat.instPreservesFiniteLimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, SSet.Truncated.spine_map_subinterval, CategoryTheory.RightExactFunctor.forget_map, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, CategoryTheory.ObjectProperty.instFullFullSubcategoryLift, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.Functor.essImage_ι_comp, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, HomotopicalAlgebra.CofibrantObject.instIsFibrantObjιBifibrantObjectιCofibrantObject, SimplexCategory.Truncated.δ₂_zero_comp_σ₂_zero_assoc, HomotopicalAlgebra.CofibrantObject.toHoCat_obj_surjective, HomotopicalAlgebra.instIsMultiplicativeFullSubcategoryWeakEquivalences, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.IsFiltered.instIsFilteredOrEmptyFullSubcategoryFilteredClosure, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, TannakaDuality.FiniteGroup.sumSMulInv_apply, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution'_obj, CategoryTheory.PreGaloisCategory.functorToContAction_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans, CategoryTheory.ObjectProperty.ι_ε, HomotopicalAlgebra.FibrantObject.instWeakEquivalenceHoCatAppιCompResolutionNatTrans, FDRep.instFiniteDimensionalCarrierVFGModuleCat, FGModuleCat.instFiniteHom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorUnit_obj, CategoryTheory.MonoOver.image_map, CategoryTheory.decomposedEquiv_functor, HomotopicalAlgebra.CofibrantObject.instIsCofibrantObjι, CategoryTheory.CosimplicialObject.Truncated.whiskering_map_app_app, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_map, CategoryTheory.AdditiveFunctor.forget_obj_of, HomotopicalAlgebra.FibrantObject.localizerMorphism_functor, FDRep.average_char_eq_finrank_invariants, FGModuleCat.hom_id, CategoryTheory.AdditiveFunctor.forget_obj, SSet.Truncated.HomotopyCategory.mk_surjective, HomotopicalAlgebra.FibrantObject.instFullHoCatToHoCat, HomotopicalAlgebra.BifibrantObject.instIsLocalizationHoCatToHoCatWeakEquivalences, CategoryTheory.LeftExactFunctor.whiskeringLeft_obj_obj_obj, comp_def, SSet.Truncated.StrictSegal.spine_δ_arrow_lt, CategoryTheory.Equivalence.mapContAction_functor, HomotopicalAlgebra.FibrantObject.instIsLocalizationCompιWeakEquivalences, CategoryTheory.Subobject.inf_eq_map_pullback', CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, HomotopicalAlgebra.CofibrantObject.instIsCofibrantObjFunctorWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.BifibrantObject.instIsCofibrantObjFibrantObjectsObjFibrantObjectιFibrantObject, CategoryTheory.Functor.essImage.liftFunctorCompIso_hom_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, CategoryTheory.Functor.toEssImage_map_hom, CategoryTheory.Functor.partialRightAdjoint_obj, SSet.Truncated.id_app, CategoryTheory.Functor.mapContAction_map, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, CategoryTheory.monoOver_terminal_to_subterminals_comp, FDRep.hom_hom_action_ρ, CategoryTheory.instLocallySmallFullSubcategoryFunctorOppositeTypeIsIndObject, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac, CategoryTheory.ExactFunctor.whiskeringLeft_map_app, CategoryTheory.essentiallySmall_fullSubcategory_mem, ContAction.resCongr_hom, CategoryTheory.MonoOver.image_obj, SSet.Truncated.spine_map_vertex, SSet.Truncated.Edge.CompStruct.tensor_simplex_fst, CategoryTheory.ObjectProperty.ι_obj, CategoryTheory.IsFinitelyAccessibleCategory.instIsFilteredCostructuredArrowFullSubcategoryIsFinitelyPresentableι, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, HomotopicalAlgebra.CofibrantObject.exists_bifibrant_map, FGModuleCat.FGModuleCatCoevaluation_apply_one, HomotopicalAlgebra.CofibrantObject.instFullHoCatToHoCat, CategoryTheory.LeftExactFunctor.ofExact_map_hom, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.equivEssImageOfReflective_functor, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, HomotopicalAlgebra.BifibrantObject.toHoCat_obj_surjective, SSet.Truncated.Edge.map_associator_hom, CategoryTheory.Functor.mapGrpFunctor_map_app, HomotopicalAlgebra.CofibrantObject.instIsConnectedLeftResolutionWeakEquivalencesLocalizerMorphism, SSet.Truncated.Edge.src_eq, SSet.Truncated.rightExtensionInclusion_right_as, CategoryTheory.Limits.hasLimit_of_closedUnderLimits, CategoryTheory.ExactFunctor.whiskeringLeft_obj_obj_obj, CategoryTheory.MonoOver.map_obj_arrow, HomotopicalAlgebra.FibrantObject.toHoCat_map_eq, SimplexCategory.Truncated.morphismProperty_eq_top, CategoryTheory.ObjectProperty.instMonoidalLinearFullSubcategory, CategoryTheory.ExactFunctor.whiskeringLeft_obj_map, ContAction.res_obj_obj, HomotopicalAlgebra.instHasTwoOutOfThreePropertyFullSubcategoryWeakEquivalences, CategoryTheory.Equivalence.congrFullSubcategory_unitIso, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, TannakaDuality.FiniteGroup.equivApp_inv, CategoryTheory.decomposedTo_map, CategoryTheory.ObjectProperty.tensorObj_obj, SSet.Truncated.StrictSegal.spine_δ_arrow_gt, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, TannakaDuality.FiniteGroup.forget_map, HomotopicalAlgebra.FibrantObject.instIsConnectedRightResolutionWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.instIsLocalizationCompHoCatToHoCatWeakEquivalences, CategoryTheory.Subobject.lower_comm, SSet.Truncated.StrictSegal.spineInjective, CategoryTheory.IsCofiltered.instIsCofilteredOrEmptyFullSubcategoryCofilteredClosure, CategoryTheory.MonoOver.hasFiniteLimits, FGModuleCat.ihom_obj, CategoryTheory.regularTopology.parallelPair_pullback_initial, TannakaDuality.FiniteGroup.equivApp_hom, FDRep.char_linHom, CategoryTheory.ObjectProperty.ι_δ, HomotopicalAlgebra.CofibrantObject.instIsLeftDerivabilityStructureWeakEquivalencesLocalizerMorphism, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_obj, CategoryTheory.SimplicialObject.isCoskeletal_iff, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.isEventuallyConstant_of_isArtinianObject, HomotopicalAlgebra.FibrantObject.HoCat.resolutionObj_hom_ext, ContAction.resComp_hom, CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_map_app, HomotopicalAlgebra.FibrantObject.instIsFibrantObjι, SSet.Truncated.Edge.map_whiskerLeft, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, SimplexCategory.Truncated.Hom.tr_id, CategoryTheory.ObjectProperty.ihom_obj, SSet.Truncated.Edge.map_snd, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, FGModuleRepr.instIsEquivalenceFGModuleCatEmbed, CategoryTheory.instEssSurjDecomposedDecomposedTo, FGModuleCat.instHasFiniteColimits, CategoryTheory.Limits.hasColimitsOfShape_of_closedUnderColimits, CategoryTheory.ObjectProperty.fullSubcategoryCongr_counitIso, CategoryTheory.Presheaf.isSheaf_iff_isLimit, HomotopicalAlgebra.instWeakEquivalenceMapFullSubcategoryι, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, SimplexCategory.Truncated.δ₂_zero_comp_δ₂_two, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, SSet.Truncated.Edge.map_id, CategoryTheory.MonoOver.forget_obj_left, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_symm_apply, HomotopicalAlgebra.FibrantObject.instIsStableUnderPrecompHomRel, CategoryTheory.Subobject.instIsEquivalenceMonoOverRepresentative, HomotopicalAlgebra.CofibrantObject.HoCat.resolutionObj_hom_ext, CategoryTheory.SimplicialObject.Truncated.trunc_obj_map, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorHoCatAdjCounit', FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorHoCatCounitHoCatAdj, CategoryTheory.ObjectProperty.IsStrongGenerator.extremalEpi_coproductFrom, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, CategoryTheory.ObjectProperty.instIsTriangulatedFullSubcategoryι, CategoryTheory.ObjectProperty.IsCoseparating.mono_productTo, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorResolutionCompToLocalizationNatTrans, CategoryTheory.ExactFunctor.whiskeringRight_obj_obj_obj, CategoryTheory.AdditiveFunctor.ofLeftExact_obj_fst, SimplexCategory.Truncated.δ₂_zero_comp_σ₂_one_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_functor, SSet.Truncated.StrictSegal.spineToSimplex_vertex, CategoryTheory.Functor.partialRightAdjoint_map, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, SimplexCategory.Truncated.initial_inclusion, HomotopicalAlgebra.BifibrantObject.instIsStableUnderPostcompHomRel, SSet.Truncated.StrictSegal.spine_δ_vertex_ge, CategoryTheory.ObjectProperty.instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall_1, HomotopicalAlgebra.FibrantObject.weakEquivalence_homMk_iff, CategoryTheory.AdditiveFunctor.forget_map, SSet.Truncated.StrictSegal.spineToSimplex_edge, ContAction.resEquiv_functor, FDRep.instHasKernels, SSet.Truncated.spine_arrow, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, HomotopicalAlgebra.BifibrantObject.HoCat.ιFibrantObject_obj, SimplexCategory.Truncated.δ₂_one_comp_σ₂_zero, FGModuleCat.Iso.conj_eq_conj, id_def, SSet.Truncated.HomotopyCategory.homToNerveMk_app_one, CategoryTheory.ObjectProperty.ihom_map, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution_map, SSet.Truncated.Edge.mk'_edge, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, CategoryTheory.RightExactFunctor.ofExact_map, CategoryTheory.LeftExactFunctor.ofExact_obj, CategoryTheory.ObjectProperty.IsStrongGenerator.isDense_colimitsCardinalClosure_ι, Alexandrov.lowerCone_π_app, CategoryTheory.ObjectProperty.isoHom_inv_id_hom_assoc, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.MonoOver.hasLimitsOfShape, HomotopicalAlgebra.FibrantObject.homRel_equivalence_of_isCofibrant_src, SSet.Truncated.comp_app_assoc, SSet.Truncated.Edge.map_tensorHom, CategoryTheory.instIsEquivalenceDecomposedDecomposedTo, SSet.Truncated.StrictSegal.spineToSimplex_arrow, CategoryTheory.MonoOver.congr_functor, SSet.Truncated.rightExtensionInclusion_left, FGModuleCat.hom_hom_comp, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac_assoc, AddCommGrpCat.leftExactFunctorForgetEquivalence.instPreservesFiniteLimitsObjLeftExactFunctorTypeFunctorInverseAux, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, CategoryTheory.MonoOver.congr_inverse, CategoryTheory.ObjectProperty.whiskerLeft_def, FDRep.char_one, SSet.Truncated.spine_vertex, CategoryTheory.AdditiveFunctor.ofRightExact_obj_fst, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.MonoOver.isoMk_hom, CategoryTheory.SimplicialObject.Truncated.trunc_map_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounitIso_inv_app, CategoryTheory.IsFiltered.instEssentiallySmallFullSubcategoryFilteredClosure, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π_assoc, SSet.Truncated.mapHomotopyCategory_obj, HomotopicalAlgebra.CofibrantObject.HoCat.adjUnit_app, TannakaDuality.FiniteGroup.sumSMulInv_single_id, CategoryTheory.ObjectProperty.instIsEquivalenceFullSubcategoryIsoClosureιOfLE, SSet.Truncated.Edge.map_edge, CategoryTheory.ObjectProperty.ι_μ, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceIBifibrantResolutionObj, SSet.Truncated.Edge.id_edge, SimplexCategory.Truncated.δ₂_two_comp_σ₂_zero, HomotopicalAlgebra.FibrantObject.homMk_homMk_assoc, CategoryTheory.ObjectProperty.ι_map_top, FDRep.simple_iff_end_is_rank_one, CategoryTheory.ObjectProperty.whiskerRight_def, CategoryTheory.ExactFunctor.whiskeringRight_map_app, HomotopicalAlgebra.BifibrantObject.homMk_homMk, CategoryTheory.Subobject.lowerEquivalence_counitIso, HomotopicalAlgebra.BifibrantObject.instIsFibrantObjCofibrantObjectsObjCofibrantObjectιCofibrantObject, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, CategoryTheory.IsCardinalAccessibleCategory.instIsDenseFullSubcategoryIsCardinalPresentableι, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution_obj, CategoryTheory.ObjectProperty.leftUnitor_def, CategoryTheory.Functor.partialLeftAdjoint_obj, SSet.Truncated.Path.arrow_src, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, HomotopicalAlgebra.BifibrantObject.toHoCat_map_eq_iff, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.MonoOver.isThin, HomotopicalAlgebra.FibrantObject.instHasQuotientWeakEquivalencesHomRel, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceWWeakEquivalences, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, HomotopicalAlgebra.FibrantObject.instWeakEquivalenceWWeakEquivalences, HomotopicalAlgebra.FibrantObject.HoCat.ιCompResolutionNatTrans_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_hom_hom, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, CategoryTheory.ObjectProperty.prop_ι_obj, SSet.horn.spineId_vertex_coe, HomotopicalAlgebra.CofibrantObject.localizerMorphism_functor, CategoryTheory.Functor.essImage.liftFunctorCompIso_inv_app, HomotopicalAlgebra.CofibrantObject.instIsStableUnderPrecompHomRel, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, SSet.Truncated.tensor_map_apply_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_obj, SSet.horn.spineId_arrow_coe, CategoryTheory.ObjectProperty.instHasZeroObjectFullSubcategoryOfContainsZero, FGModuleCat.instHasLimitsOfShapeOfFinCategory, CategoryTheory.MonoOver.pullback_obj_left, CategoryTheory.SimplicialObject.IsCoskeletal.isRightKanExtension, FGModuleCat.instFullUlift, CategoryTheory.Subobject.lowerEquivalence_unitIso, SSet.Truncated.Edge.tensor_edge, instFullFGAlgCatUliftFunctor, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, SSet.Truncated.Path.map_vertex, HomotopicalAlgebra.FibrantObject.toHoCat_obj_surjective, SSet.Truncated.StrictSegal.spine_δ_arrow_eq, SimplexCategory.Truncated.δ₂_two_comp_σ₂_zero_assoc, LinearEquiv.toFGModuleCatIso_hom, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, HomotopicalAlgebra.CofibrantObject.instIsIsoHoCatAppAdjCounit', CategoryTheory.SimplicialObject.Truncated.whiskering_obj_obj_map, SSet.Subcomplex.liftPath_arrow_coe, CategoryTheory.ObjectProperty.homMk_surjective, SSet.Truncated.HomotopyCategory.BinaryProduct.square, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, HomotopicalAlgebra.BifibrantObject.instIsStableUnderPrecompHomRel, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, SSet.Truncated.Path₁.arrow_tgt, ContAction.resCongr_inv, HomotopicalAlgebra.CofibrantObject.factorsThroughLocalization, CategoryTheory.ObjectProperty.associator_def, CategoryTheory.ObjectProperty.instMonoidalPreadditiveFullSubcategory, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.ObjectProperty.ιOfLE_map, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_hom_hom, FGModuleCat.instHasFiniteLimits, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, SSet.Truncated.HomotopyCategory.homToNerveMk_app_edge, SSet.Truncated.StrictSegal.spineToSimplex_interval, SSet.Truncated.hom_ext_iff, CategoryTheory.Functor.mapCommGrpFunctor_map, SimplexCategory.Truncated.δ₂_one_comp_σ₂_one_assoc, CategoryTheory.equivEssImageOfReflective_inverse, HomotopicalAlgebra.CofibrantObject.homMk_homMk_assoc, SimplexCategory.Truncated.Hom.tr_comp_assoc, CategoryTheory.MonoOver.forget_obj_hom, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, HomotopicalAlgebra.BifibrantObject.homMk_homMk_assoc, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppιCompResolutionNatTrans, CategoryTheory.ObjectProperty.isoMk_inv, SSet.Truncated.Path.arrow_tgt, CategoryTheory.RightExactFunctor.ofExact_obj, Alexandrov.lowerCone_pt, CategoryTheory.Functor.instAdditiveFullSubcategoryLift, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppAdjUnit, CategoryTheory.ObjectProperty.fullSubcategoryCongr_functor, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.instIsCardinalPresentableObjFullSubcategoryIsCardinalPresentableι, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.ObjectProperty.isFiltered_costructuredArrow_colimitsCardinalClosure_ι, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π, Types.monoOverEquivalenceSet_inverse_obj, FDRep.forget₂_ρ, CategoryTheory.MonoOver.hasLimit, comp_hom, CategoryTheory.ExactFunctor.forget_obj_of, CategoryTheory.Equivalence.mapContAction_inverse, SSet.Subcomplex.liftPath_vertex_coe, SimplexCategory.Truncated.δ₂_zero_comp_σ₂_one, HomotopicalAlgebra.FibrantObject.instIsIsoFunctorResolutionCompToLocalizationNatTrans, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, CategoryTheory.instIsConnectedComponent, HomotopicalAlgebra.CofibrantObject.instFullHoCatHoCatιCofibrantObject, FDRep.instFiniteCarrierVFGModuleCat, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_map, CategoryTheory.Functor.essImage.liftFunctor_obj, CategoryTheory.Functor.mapContActionComp_hom, CategoryTheory.ObjectProperty.ιOfLE_ε, CategoryTheory.inclusion_comp_decomposedTo, FDRep.Iso.conj_ρ, FDRep.of_ρ, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerRight_hom, CategoryTheory.MonoOver.inf_obj, CategoryTheory.ObjectProperty.exists_equivalence_iff, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, FDRep.char_dual, FGModuleCat.FGModuleCatEvaluation_apply', SSet.Truncated.Path.mk₂_vertex, HomotopicalAlgebra.FibrantObject.homMk_id, Types.monoOverEquivalenceSet_unitIso, SSet.Truncated.IsStrictSegal.spine_bijective, CategoryTheory.Equivalence.fullyFaithfulToEssImage, HomotopicalAlgebra.CofibrantObject.instIsLocalizationHoCatHoCatBifibrantResolutionWeakEquivalences, CategoryTheory.Equivalence.congrFullSubcategory_functor, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, SSet.OneTruncation₂.nerveHomEquiv_apply, HomotopicalAlgebra.CofibrantObject.instHasQuotientWeakEquivalencesHomRel, CategoryTheory.ObjectProperty.instIsTriangulatedFullSubcategory, HomotopicalAlgebra.CofibrantObject.HoCat.ιCompResolutionNatTrans_app, CategoryTheory.ObjectProperty.ιOfLE_obj_obj, CategoryTheory.Functor.toEssImageCompι_inv_app, CategoryTheory.Functor.EssSurj.toEssImage, CategoryTheory.ObjectProperty.ι_obj_lift_map, CategoryTheory.RightExactFunctor.whiskeringLeft_obj_obj_obj, CategoryTheory.Subobject.representative_coe, CategoryTheory.MonoOver.full_map, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, SSet.Truncated.Edge.CompStruct.d₀, SSet.Truncated.Edge.map_whiskerRight, SSet.Truncated.comp_app, HomotopicalAlgebra.FibrantObject.instIsFibrantObjFunctorWeakEquivalencesLocalizerMorphism, CategoryTheory.Subobject.inf_eq_map_pullback, CategoryTheory.Functor.toEssImageCompι_hom_app, SSet.Truncated.Edge.CompStruct.map_simplex, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, HomotopicalAlgebra.CofibrantObject.instIsLocalizationCompιWeakEquivalences, CategoryTheory.decomposedTo_obj, CategoryTheory.MonoOver.mapIso_inverse, CategoryTheory.ObjectProperty.instFaithfulFullSubcategoryLift, HomotopicalAlgebra.CofibrantObject.exists_bifibrant, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution'_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.instAdditiveAdditiveFunctorFunctorForget, CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_obj_map, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, SSet.OneTruncation₂.map_obj, CategoryTheory.RightExactFunctor.forget_obj_of, HomotopicalAlgebra.FibrantObject.factorsThroughLocalization, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.RightExactFunctor.whiskeringLeft_obj_map, CategoryTheory.Subobject.lowerEquivalence_inverse, CategoryTheory.Subobject.lowerEquivalence_functor, CategoryTheory.ObjectProperty.ι_obj_lift_obj, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_obj, SSet.Truncated.rightExtensionInclusion_hom_app, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppUnitHoCatAdj, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, CategoryTheory.AdditiveFunctor.ofExact_map_hom, CategoryTheory.nerve.functorOfNerveMap_obj, HomotopicalAlgebra.BifibrantObject.instIsCofibrantObjι, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, SSet.Truncated.Path₁.arrow_src, CategoryTheory.IsFinitelyAccessibleCategory.instIsDenseFullSubcategoryIsFinitelyPresentableι, CategoryTheory.equivEssImageOfReflective_counitIso, SimplexCategory.Truncated.δ₂_one_comp_σ₂_zero_assoc, HomotopicalAlgebra.CofibrantObject.weakEquivalence_toHoCat_map_iff, SSet.Truncated.Edge.CompStruct.d₁, CategoryTheory.ObjectProperty.faithful_ιOfLE, TopCat.Presheaf.IsSheaf.isSheafOpensLeCover, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, SimplexCategory.Truncated.δ₂_two_comp_σ₂_one, SSet.OneTruncation₂.id_edge, CategoryTheory.MorphismProperty.isCardinalAccessible_ι_isLocal, HomotopicalAlgebra.CofibrantObject.HoCat.localizerMorphismResolution_functor, CategoryTheory.ObjectProperty.topEquivalence_inverse, CategoryTheory.IsCardinalAccessibleCategory.instIsCardinalFilteredCostructuredArrowFullSubcategoryIsCardinalPresentableι, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerLeft_hom, HomotopicalAlgebra.BifibrantObject.HoCat.ιCofibrantObject_map_toHoCat_map, CategoryTheory.ObjectProperty.topEquivalence_functor, CategoryTheory.Functor.toEssImage_obj_obj, CategoryTheory.IsCofiltered.instEssentiallySmallFullSubcategoryCofilteredClosure, FGModuleCat.instFaithfulUlift, HomotopicalAlgebra.FibrantObject.HoCat.localizerMorphismResolution_functor, CategoryTheory.isEventuallyConstant_of_isNoetherianObject, CategoryTheory.ExactFunctor.whiskeringRight_obj_map, CategoryTheory.Functor.essImage.liftFunctor_map, CategoryTheory.MonoOver.faithful_exists, TannakaDuality.FiniteGroup.ofRightFDRep_hom, CategoryTheory.isNoetherianObject_iff_isEventuallyConstant, Types.monoOverEquivalenceSet_counitIso, HomotopicalAlgebra.FibrantObject.instIsLocalizedEquivalenceWeakEquivalencesLocalizerMorphism, CategoryTheory.ObjectProperty.isoInv_hom_id_hom_assoc, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHomFullSubcategoryCofibrantObjectsIBifibrantResolutionObj, CategoryTheory.LeftExactFunctor.whiskeringLeft_obj_map, SSet.Truncated.StrictSegal.spine_δ_vertex_lt, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, SimplexCategory.Truncated.Hom.tr_comp'_assoc, CategoryTheory.ObjectProperty.IsSeparating.epi_coproductFrom, CategoryTheory.Functor.EssImageSubcategory.lift_def, SSet.Truncated.HomotopyCategory.descOfTruncation_obj_mk, CategoryTheory.ObjectProperty.ιOfLE_η, FGModuleCat.Iso.conj_hom_eq_conj, CategoryTheory.isArtinianObject_iff_isEventuallyConstant, CategoryTheory.ObjectProperty.isEquivalence_ιOfLE_iff, CategoryTheory.MonoOver.faithful_map, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Limits.hasColimit_of_closedUnderColimits, CategoryTheory.AdditiveFunctor.ofLeftExact_map_hom, CategoryTheory.ObjectProperty.ιOfLE_μ, CategoryTheory.Functor.mapContAction_obj_obj, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, CategoryTheory.MonoOver.hasLimitsOfSize, HomotopicalAlgebra.FibrantObject.instIsRightDerivabilityStructureWeakEquivalencesLocalizerMorphism, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, LinearEquiv.toFGModuleCatIso_inv, HomotopicalAlgebra.CofibrantObject.homMk_id, CategoryTheory.ObjectProperty.isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι, ContAction.resComp_inv, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounit'_app, TannakaDuality.FiniteGroup.equivHom_surjective, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_obj, TannakaDuality.FiniteGroup.equivHom_injective, ContAction.res_map, CategoryTheory.Subobject.representative_arrow, FDRep.hom_action_ρ, SimplexCategory.Truncated.initial_incl, CategoryTheory.Functor.Full.toEssImage, FDRep.dualTensorIsoLinHom_hom_hom, CategoryTheory.RightExactFunctor.forget_obj, SSet.StrictSegal.isRightKanExtension, SSet.Truncated.IsStrictSegal.segal, HomotopicalAlgebra.BifibrantObject.instFullHoCatToHoCat, HomotopicalAlgebra.CofibrantObject.instIsStableUnderPostcompHomRel, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorHom_hom, CategoryTheory.ObjectProperty.ιOfLE_δ, HomotopicalAlgebra.CofibrantObject.weakEquivalence_homMk_iff, CategoryTheory.ObjectProperty.instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, HomotopicalAlgebra.CofibrantObject.instCofibrationHomFullSubcategoryCofibrantObjectsIBifibrantResolutionObj, CategoryTheory.Functor.essImage_ext_iff, Alexandrov.projSup_map, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.ObjectProperty.ihom_map_hom, CategoryTheory.Pseudofunctor.ObjectProperty.map₂_app_hom, CategoryTheory.ObjectProperty.isoInv_hom_id_hom, SSet.Truncated.spine_injective, FDRep.endRingEquiv_comp_ρ, id_hom, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_map_app, HomotopicalAlgebra.FibrantObject.instIsStableUnderPostcompHomRel, TannakaDuality.FiniteGroup.equivHom_apply, SSet.Truncated.Edge.CompStruct.idCompId_simplex, CategoryTheory.MorphismProperty.isLocallyPresentable_isLocal, FDRep.simple_iff_char_is_norm_one, CategoryTheory.AdditiveFunctor.ofRightExact_map_hom, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac'_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, CategoryTheory.ObjectProperty.essSurj_ιOfLE_iff, CategoryTheory.ObjectProperty.isTriangulated_lift, CategoryTheory.LeftExactFunctor.whiskeringRight_obj_obj_obj, HomotopicalAlgebra.CofibrantObject.instIsLocalizedEquivalenceWeakEquivalencesLocalizerMorphism, CategoryTheory.RightExactFunctor.whiskeringRight_obj_map, HomotopicalAlgebra.CofibrantObject.toHoCat_map_eq, SSet.Truncated.Edge.tgt_eq, CategoryTheory.MonoOver.isIso_iff_isIso_left, CategoryTheory.LeftExactFunctor.forget_obj_of, HomotopicalAlgebra.BifibrantObject.HoCat.ιFibrantObject_map_toHoCat_map, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_inv_hom, SSet.Truncated.StrictSegal.spineToSimplex_map, FGModuleCat.instIsIsoCoimageImageComparison, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.essentiallySmall_monoOver_iff_small_subobject, HomotopicalAlgebra.BifibrantObject.instIsFibrantObjι, CategoryTheory.Functor.partialLeftAdjoint_map
|
obj 📖 | CompOp | 309 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.ObjectProperty.isoMk_hom, CategoryTheory.LeftExactFunctor.ofExact_map, DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm, CategoryTheory.instIsCardinalPresentableObjIsCardinalPresentable, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, CategoryTheory.MonoOver.mk_coe, LinearMap.id_fgModuleCat_comp, CategoryTheory.ExactFunctor.forget_map, CategoryTheory.MonoOver.congr_unitIso, CategoryTheory.LeftExactFunctor.forget_map, FGModuleCat.hom_hom_id, CategoryTheory.ObjectProperty.rightUnitor_def, HomotopicalAlgebra.weakEquivalence_iff_of_objectProperty, HomotopicalAlgebra.BifibrantObject.instIsFibrantObjBifibrantObjects, CategoryTheory.instAdditiveObjFunctorAdditiveFunctor, comp_hom_assoc, CategoryTheory.MonoOver.mk_obj, FDRep.endRingEquiv_symm_comp_ρ, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.RightExactFunctor.whiskeringRight_obj_obj_obj, CategoryTheory.Sieve.ofArrows_category', CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, CategoryTheory.ObjectProperty.lift_obj_obj, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_hom_hom, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_inv_hom, CategoryTheory.ObjectProperty.tensorUnit_obj, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm_assoc, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorObj_obj, FGModuleCat.instPreservesFiniteColimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp, CategoryTheory.instAdditiveObjFunctorAdditiveFunctor_1, LinearMap.comp_id_fgModuleCat, CategoryTheory.ObjectProperty.eqToHom_hom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_snd_hom, CategoryTheory.ObjectProperty.tensorHom_def, CategoryTheory.AdditiveFunctor.ofExact_obj_fst, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac', CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.ObjectProperty.isoHom_inv_id_hom, AlgebraicGeometry.AffineScheme.mk_obj, FGModuleCat.instFiniteHomModuleCatObjIsFG, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_fst_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, CategoryTheory.RightExactFunctor.whiskeringLeft_map_app, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.ExactFunctor.forget_obj, CategoryTheory.LeftExactFunctor.forget_obj, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm_assoc, CategoryTheory.Functor.mapGrpFunctor_obj, CategoryTheory.MonoOver.map_obj_left, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.RightExactFunctor.whiskeringRight_map_app, CategoryTheory.Sieve.ofArrows_category, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.Functor.mapCommGrpFunctor_obj, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, HomotopicalAlgebra.FibrantObject.homRel_iff_leftHomotopyRel, CategoryTheory.AdditiveFunctor.ofLeftExact_map, CategoryTheory.RightExactFunctor.ofExact_map_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_map, CategoryTheory.LeftExactFunctor.whiskeringRight_map_app, FGModuleCat.hom_comp, CategoryTheory.MorphismProperty.FunctorsInverting.id_hom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_inv_hom, SimplexCategory.Truncated.Hom.tr_comp', CategoryTheory.ObjectProperty.ι_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_obj, CategoryTheory.LeftExactFunctor.whiskeringRight_obj_map, CategoryTheory.AdditiveFunctor.ofRightExact_map, CategoryTheory.AdditiveFunctor.ofExact_map, property, FGModuleCat.FGModuleCatEvaluation_apply, CategoryTheory.LeftExactFunctor.whiskeringLeft_map_app, FGModuleCat.instPreservesFiniteLimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.RightExactFunctor.forget_map, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorUnit_obj, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp, FGModuleCat.hom_id, CategoryTheory.AdditiveFunctor.forget_obj, CategoryTheory.Localization.whiskeringLeftFunctor'_eq, CategoryTheory.Functor.partialRightAdjointHomEquiv_map, CategoryTheory.LeftExactFunctor.whiskeringLeft_obj_obj_obj, comp_def, CategoryTheory.Subobject.inf_eq_map_pullback', CategoryTheory.Functor.partialLeftAdjointHomEquiv_map, HomotopicalAlgebra.BifibrantObject.instIsCofibrantObjFibrantObjectsObjFibrantObjectιFibrantObject, CategoryTheory.Functor.essImage.liftFunctorCompIso_hom_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, CategoryTheory.Functor.toEssImage_map_hom, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, CategoryTheory.Functor.instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, FDRep.hom_hom_action_ρ, FGModuleCat.FGModuleCatDual_obj, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac, CategoryTheory.ExactFunctor.whiskeringLeft_map_app, ContAction.resCongr_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_map_app, SSet.Truncated.spine_map_vertex, CategoryTheory.ObjectProperty.ι_obj, FGModuleCat.obj_carrier, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, FGModuleCat.FGModuleCatCoevaluation_apply_one, CategoryTheory.LeftExactFunctor.ofExact_map_hom, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.Functor.mapGrpFunctor_map_app, CategoryTheory.MonoOver.bot_left, CategoryTheory.Presieve.ofArrows_category, CategoryTheory.ExactFunctor.whiskeringLeft_obj_obj_obj, CategoryTheory.MonoOver.map_obj_arrow, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_map_hom_app, CategoryTheory.ExactFunctor.whiskeringLeft_obj_map, ContAction.res_obj_obj, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, TannakaDuality.FiniteGroup.equivApp_inv, CategoryTheory.ObjectProperty.tensorObj_obj, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.MonoOver.w, CategoryTheory.MonoOver.bot_arrow_eq_zero, CategoryTheory.MorphismProperty.FunctorsInverting.comp_hom_assoc, FGModuleCat.ihom_obj, CategoryTheory.regularTopology.parallelPair_pullback_initial, TannakaDuality.FiniteGroup.equivApp_hom, CategoryTheory.Pseudofunctor.isStackFor_iff, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.ObjectProperty.ihom_obj, CategoryTheory.MonoOver.mk'_coe', CategoryTheory.MonoOver.mono, CategoryTheory.MonoOver.forget_obj_left, AlgebraicGeometry.AffineScheme.forgetToScheme_map, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, CategoryTheory.ExactFunctor.whiskeringRight_obj_obj_obj, CategoryTheory.AdditiveFunctor.ofLeftExact_obj_fst, CategoryTheory.Functor.partialLeftAdjointHomEquiv_map_comp, CategoryTheory.instIsIsoAppUnitReflectorAdjunctionObjEssImage, AlgebraicGeometry.isAffine_affineScheme, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, CategoryTheory.AdditiveFunctor.forget_map, CategoryTheory.instPreservesFiniteLimitsObjFunctorLeftExactFunctor, FGModuleCat.Iso.conj_eq_conj, id_def, CategoryTheory.ObjectProperty.ihom_map, SimplexCategory.Truncated.Hom.ext_iff, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, CategoryTheory.RightExactFunctor.ofExact_map, CategoryTheory.LeftExactFunctor.ofExact_obj, CategoryTheory.ObjectProperty.isoHom_inv_id_hom_assoc, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, FGModuleCat.hom_hom_comp, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac_assoc, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, HomotopicalAlgebra.BifibrantObject.homRel_iff_leftHomotopyRel, CategoryTheory.ObjectProperty.whiskerLeft_def, FGModuleCat.hom_ext_iff, CategoryTheory.AdditiveFunctor.ofRightExact_obj_fst, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, ext_iff, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounitIso_inv_app, CategoryTheory.Functor.instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π_assoc, CategoryTheory.ObjectProperty.whiskerRight_def, CategoryTheory.ExactFunctor.whiskeringRight_map_app, HomotopicalAlgebra.BifibrantObject.instIsFibrantObjCofibrantObjectsObjCofibrantObjectιCofibrantObject, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, CategoryTheory.ObjectProperty.leftUnitor_def, CategoryTheory.MonoOver.lift_obj_obj, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, HomotopicalAlgebra.FibrantObject.HoCat.ιCompResolutionNatTrans_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_hom_hom, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Functor.essImage.liftFunctorCompIso_inv_app, CategoryTheory.MonoOver.w_assoc, CategoryTheory.LeftExactFunctor.of_fst, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.MorphismProperty.FunctorsInverting.ext_iff, CategoryTheory.MonoOver.pullback_obj_left, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_obj, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, CategoryTheory.MonoOver.lift_map_hom, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, CategoryTheory.AdditiveFunctor.of_obj, LinearEquiv.toFGModuleCatIso_hom, CategoryTheory.ObjectProperty.homMk_surjective, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, CategoryTheory.RightExactFunctor.of_fst, ContAction.resCongr_inv, CategoryTheory.ObjectProperty.associator_def, CategoryTheory.MorphismProperty.FunctorsInverting.comp_hom, HomotopicalAlgebra.FibrantObject.instIsFibrantObjFibrantObjects, CategoryTheory.ObjectProperty.ιOfLE_map, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_hom_hom, instFiniteCarrierObjModuleCatIsFG, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.Functor.mapCommGrpFunctor_map, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.instPreservesFiniteColimitsObjFunctorRightExactFunctor, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.ObjectProperty.isoMk_inv, CategoryTheory.RightExactFunctor.ofExact_obj, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp_assoc, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp_assoc, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π, FDRep.forget₂_ρ, comp_hom, instFiniteTypeCarrierObjCommAlgCat, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, FDRep.of_ρ, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerRight_hom, CategoryTheory.MonoOver.inf_obj, CategoryTheory.MonoOver.top_left, HomotopicalAlgebra.BifibrantObject.instIsCofibrantObjBifibrantObjects, FGModuleCat.FGModuleCatEvaluation_apply', Types.monoOverEquivalenceSet_unitIso, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, HomotopicalAlgebra.CofibrantObject.HoCat.ιCompResolutionNatTrans_app, CategoryTheory.ExactFunctor.of_fst, CategoryTheory.instPreservesFiniteColimitsObjFunctorExactFunctor, CategoryTheory.ObjectProperty.ιOfLE_obj_obj, AlgebraicGeometry.AffineScheme.forgetToScheme_obj, CategoryTheory.RightExactFunctor.whiskeringLeft_obj_obj_obj, CategoryTheory.Subobject.representative_coe, CategoryTheory.ObjectProperty.hom_ext_iff, CategoryTheory.AdditiveFunctor.of_fst, CategoryTheory.Subobject.inf_eq_map_pullback, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.decomposedTo_obj, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.RightExactFunctor.whiskeringLeft_obj_map, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, CategoryTheory.AdditiveFunctor.ofExact_map_hom, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.subterminalInclusion_obj, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp, CategoryTheory.equivEssImageOfReflective_counitIso, CategoryTheory.subterminalInclusion_map, Algebra.FiniteType.exists_fgAlgCatSkeleton, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerLeft_hom, HomotopicalAlgebra.BifibrantObject.HoCat.ιCofibrantObject_map_toHoCat_map, HomotopicalAlgebra.BifibrantObject.homRel_iff_rightHomotopyRel, CategoryTheory.Functor.toEssImage_obj_obj, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm, CategoryTheory.ExactFunctor.whiskeringRight_obj_map, CategoryTheory.Functor.essImage.liftFunctor_map, TannakaDuality.FiniteGroup.ofRightFDRep_hom, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.ObjectProperty.isoInv_hom_id_hom_assoc, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHomFullSubcategoryCofibrantObjectsIBifibrantResolutionObj, CategoryTheory.LeftExactFunctor.whiskeringLeft_obj_map, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, SimplexCategory.Truncated.Hom.tr_comp'_assoc, CategoryTheory.Functor.EssImageSubcategory.lift_def, FGModuleCat.Iso.conj_hom_eq_conj, CategoryTheory.AdditiveFunctor.ofLeftExact_map_hom, CategoryTheory.ObjectProperty.homMk_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, HomotopicalAlgebra.CofibrantObject.instIsCofibrantObjCofibrantObjects, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, LinearEquiv.toFGModuleCatIso_inv, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounit'_app, ContAction.res_map, FDRep.hom_action_ρ, FDRep.dualTensorIsoLinHom_hom_hom, CategoryTheory.RightExactFunctor.forget_obj, CategoryTheory.instPreservesFiniteLimitsObjFunctorExactFunctor, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorHom_hom, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, HomotopicalAlgebra.CofibrantObject.instCofibrationHomFullSubcategoryCofibrantObjectsIBifibrantResolutionObj, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, Alexandrov.projSup_map, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.ObjectProperty.ihom_map_hom, CategoryTheory.Pseudofunctor.ObjectProperty.map₂_app_hom, CategoryTheory.ObjectProperty.isoInv_hom_id_hom, CategoryTheory.Functor.partialRightAdjointHomEquiv_map_comp, FDRep.endRingEquiv_comp_ρ, id_hom, HomotopicalAlgebra.instWeakEquivalenceHomFullSubcategory, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.AdditiveFunctor.ofRightExact_map_hom, HomotopicalAlgebra.CofibrantObject.homRel_iff_rightHomotopyRel, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac'_assoc, CategoryTheory.LeftExactFunctor.whiskeringRight_obj_obj_obj, CategoryTheory.RightExactFunctor.whiskeringRight_obj_map, CategoryTheory.MonoOver.isIso_iff_isIso_left, HomotopicalAlgebra.BifibrantObject.HoCat.ιFibrantObject_map_toHoCat_map, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_inv_hom, CategoryTheory.MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, CategoryTheory.MorphismProperty.FunctorsInverting.hom_ext_iff
|