Documentation Verification Report

Ind

📁 Source: Mathlib/CategoryTheory/ObjectProperty/Ind.lean

Statistics

MetricCount
DefinitionsInd, ind
2
Theoremsind_iff_exists, ind_ind, instIsClosedUnderIsomorphismsInd, le_ind, of_essentiallySmall_index
5
Total7

CategoryTheory

Definitions

NameCategoryTheorems
Ind 📖CompOp
27 mathmath: instHasFilteredColimitsInd, instHasColimitsOfShapeWalkingParallelPairInd, instFullIndYoneda, instPreservesLimitsIndYoneda, Limits.instAB5IndOfHasFiniteLimits, Ind.isIndObject_inclusion_obj, Ind.exists_nonempty_arrow_mk_iso_ind_lim, instHasLimitsInd, Limits.instHasExactColimitsOfShapeIndOfHasFiniteLimits, Ind.isSeparator_range_yoneda, instPreservesLimitsOfShapeFunctorIndLimOfFinCategoryOfHasLimitsOfShape, instFaithfulIndYoneda, instIsIsoIndCoimageImageComparison, Limits.isGrothendieckAbelian_ind, instHasFiniteBiproductsInd, instHasLimitsOfShapeWalkingParallelPairInd, instPreservesColimitsOfShapeFunctorIndLimOfFinCategoryOfHasColimitsOfShape, instHasLimitsOfShapeDiscreteInd, Ind.isSeparating_range_yoneda, instHasColimitsIndOfHasFiniteColimits, instHasColimitsOfShapeDiscreteIndOfFinite, instFaithfulIndFunctorOppositeTypeInclusion, instRepresentablyCoflatIndYoneda, instHasFiniteLimitsInd, instFullIndFunctorOppositeTypeInclusion, instHasCoproductsIndOfHasFiniteCoproducts, instPreservesFiniteColimitsIndYoneda

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
ind 📖CompOp
7 mathmath: of_essentiallySmall_index, CategoryTheory.MorphismProperty.ind_iff_ind_underMk, instIsClosedUnderIsomorphismsInd, CategoryTheory.MorphismProperty.underObj_ind_eq_ind_underObj, le_ind, ind_iff_exists, ind_ind

Theorems

NameKindAssumesProvesValidatesDepends On
ind_iff_exists 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
isFinitelyPresentable
ind
CategoryTheory.CategoryStruct.comp
CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit
CategoryTheory.instIsFinitelyPresentableObjFullSubcategoryIsFinitelyPresentableι
CategoryTheory.Functor.final_of_exists_of_isFiltered_of_fullyFaithful
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.IsFinitelyAccessibleCategory.instIsFilteredCostructuredArrowFullSubcategoryIsFinitelyPresentableι
CategoryTheory.CostructuredArrow.instFullCompPre
full_ιOfLE
CategoryTheory.CostructuredArrow.instFaithfulCompPre
faithful_ιOfLE
CategoryTheory.IsFiltered.of_exists_of_isFiltered_of_fullyFaithful
CategoryTheory.Functor.IsDenseAt.of_final
CategoryTheory.Functor.IsDense.isDenseAt
CategoryTheory.IsFinitelyAccessibleCategory.instIsDenseFullSubcategoryIsFinitelyPresentableι
CategoryTheory.essentiallySmall_of_fully_faithful
CategoryTheory.CostructuredArrow.essentiallySmall
instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall_1
CategoryTheory.HasCardinalFilteredGenerator.toLocallySmall
Cardinal.fact_isRegular_aleph0
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
CategoryTheory.IsFinitelyAccessibleCategory.instEssentiallySmallIsFinitelyPresentable
of_essentiallySmall_index
FullSubcategory.property
ind_ind 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
isFinitelyPresentable
indle_antisymm
CategoryTheory.Limits.ColimitPresentation.instLocallySmallTotal
CategoryTheory.locallySmall_of_univLE
UnivLE.self
CategoryTheory.IsFiltered.of_equivalence
CategoryTheory.Limits.ColimitPresentation.instIsFilteredTotalOfIsFinitelyPresentableObjDiag
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
le_ind
instIsClosedUnderIsomorphismsInd 📖mathematicalIsClosedUnderIsomorphisms
ind
le_ind 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
ind
CategoryTheory.isFiltered_of_directed_le_nonempty
OrderTop.instIsDirectedOrder
of_essentiallySmall_index 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.ColimitPresentation.diag
indCategoryTheory.IsFiltered.of_equivalence
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse

---

← Back to Index