📁 Source: Mathlib/CategoryTheory/ObjectProperty/LimitsClosure.lean
limitsClosure
strictLimitsClosureIter
strictLimitsClosureStep
instEssentiallySmallLimitsClosureOfSmallOfLocallySmall
instIsClosedUnderIsomorphismsLimitsClosure
instIsClosedUnderLimitsOfShapeLimitsClosure
instSmallStrictLimitsClosureIterOfLocallySmallOfSmallElemIio
isEssentiallySmall_limitsClosure
isoClosure_strictLimitsClosureIter_eq_limitsClosure
le_limitsClosure
le_strictLimitsClosureIter
le_strictLimitsClosureStep
limitsClosure_isoClosure
limitsClosure_le
limitsClosure_monotone
strictLimitsClosureIter_le_limitsClosure
strictLimitsClosureStep_monotone
strictLimitsClosureStep_strictLimitsClosureIter_eq_self
colimitsClosure_eq_unop_limitsClosure
Small
CategoryTheory.LocallySmall
EssentiallySmall
HasCardinalLT.exists_regular_cardinal_forall
IsClosedUnderIsomorphisms
IsClosedUnderLimitsOfShape
LimitOfShape.prop_diag_obj
small_of_injective
lt_of_lt_of_le
transfiniteIterate_bot
IsMin.eq_bot
Order.le_succ
strictLimitsClosureIter.eq_1
transfiniteIterate_succ
strictLimitsClosureStep.eq_1
instSmallMax
instSmallISupOfSmall
instSmallStrictLimitsOfShapeOfSmallOfLocallySmall
transfiniteIterate_limit
LT.lt.le
HasCardinalLT
EssentiallySmall.exists_small_le
Ordinal.wellFoundedLT
instEssentiallySmallIsoClosure
instEssentiallySmallOfSmall
Ordinal.small_Iio
EssentiallySmall.of_le
isoClosure
Ordinal
Ordinal.instLinearOrder
Ordinal.instSuccOrder
Cardinal.ord
le_antisymm
isoClosure_le_iff
limitsOfShape_isoClosure
isoClosure_strictLimitsOfShape
monotone_isoClosure
LE.le.trans
le_trans
le_refl
le_iSup
le_sup_right
instIsClosedUnderIsomorphismsIsoClosure
le_isoClosure
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
monotone_transfiniteIterate
bot_le
le_sup_left
prop_of_iso
prop_of_isLimit
sup_le_iff
iSup_le_iff
strictLimitsOfShape_le_limitsOfShape
limitsOfShape_monotone
IsClosedUnderLimitsOfShape.limitsOfShape_le
strictLimitsOfShape_monotone
Fact.out
HasCardinalLT.small
Ordinal.iSup_lt_ord
Cardinal.IsRegular.cof_eq
hasCardinalLT_iff_cardinal_mk_lt
hasCardinalLT_iff_of_equiv
Equiv.surjective
le_ciSup
Ordinal.bddAbove_range
Order.succ_le_iff
Ordinal.instNoMaxOrder
Cardinal.isSuccLimit_ord
Cardinal.IsRegular.aleph0_le
---
← Back to Index