Documentation Verification Report

LimitsClosure

📁 Source: Mathlib/CategoryTheory/ObjectProperty/LimitsClosure.lean

Statistics

MetricCount
DefinitionslimitsClosure, strictLimitsClosureIter, strictLimitsClosureStep
3
TheoremsinstEssentiallySmallLimitsClosureOfSmallOfLocallySmall, instIsClosedUnderIsomorphismsLimitsClosure, instIsClosedUnderLimitsOfShapeLimitsClosure, instSmallStrictLimitsClosureIterOfLocallySmallOfSmallElemIio, isEssentiallySmall_limitsClosure, isoClosure_strictLimitsClosureIter_eq_limitsClosure, le_limitsClosure, le_strictLimitsClosureIter, le_strictLimitsClosureStep, limitsClosure_isoClosure, limitsClosure_le, limitsClosure_monotone, strictLimitsClosureIter_le_limitsClosure, strictLimitsClosureStep_monotone, strictLimitsClosureStep_strictLimitsClosureIter_eq_self
15
Total18

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
limitsClosure 📖CompData
11 mathmath: le_limitsClosure, limitsClosure_le, isEssentiallySmall_limitsClosure, strictLimitsClosureIter_le_limitsClosure, isoClosure_strictLimitsClosureIter_eq_limitsClosure, limitsClosure_isoClosure, instEssentiallySmallLimitsClosureOfSmallOfLocallySmall, colimitsClosure_eq_unop_limitsClosure, instIsClosedUnderLimitsOfShapeLimitsClosure, instIsClosedUnderIsomorphismsLimitsClosure, limitsClosure_monotone
strictLimitsClosureIter 📖CompOp
5 mathmath: strictLimitsClosureIter_le_limitsClosure, isoClosure_strictLimitsClosureIter_eq_limitsClosure, strictLimitsClosureStep_strictLimitsClosureIter_eq_self, instSmallStrictLimitsClosureIterOfLocallySmallOfSmallElemIio, le_strictLimitsClosureIter
strictLimitsClosureStep 📖CompOp
3 mathmath: le_strictLimitsClosureStep, strictLimitsClosureStep_monotone, strictLimitsClosureStep_strictLimitsClosureIter_eq_self

Theorems

NameKindAssumesProvesValidatesDepends On
instEssentiallySmallLimitsClosureOfSmallOfLocallySmall 📖mathematicalSmall
CategoryTheory.LocallySmall
EssentiallySmall
limitsClosure
HasCardinalLT.exists_regular_cardinal_forall
isEssentiallySmall_limitsClosure
instIsClosedUnderIsomorphismsLimitsClosure 📖mathematicalIsClosedUnderIsomorphisms
limitsClosure
instIsClosedUnderLimitsOfShapeLimitsClosure 📖mathematicalIsClosedUnderLimitsOfShape
limitsClosure
LimitOfShape.prop_diag_obj
instSmallStrictLimitsClosureIterOfLocallySmallOfSmallElemIio 📖mathematicalSmall
CategoryTheory.LocallySmall
Small
strictLimitsClosureIter
small_of_injective
lt_of_lt_of_le
transfiniteIterate_bot
IsMin.eq_bot
Order.le_succ
strictLimitsClosureIter.eq_1
transfiniteIterate_succ
strictLimitsClosureStep.eq_1
instSmallMax
instSmallISupOfSmall
instSmallStrictLimitsOfShapeOfSmallOfLocallySmall
transfiniteIterate_limit
LT.lt.le
isEssentiallySmall_limitsClosure 📖mathematicalHasCardinalLT
Small
CategoryTheory.LocallySmall
EssentiallySmall
limitsClosure
EssentiallySmall.exists_small_le
limitsClosure_isoClosure
Ordinal.wellFoundedLT
isoClosure_strictLimitsClosureIter_eq_limitsClosure
instEssentiallySmallIsoClosure
instEssentiallySmallOfSmall
instSmallStrictLimitsClosureIterOfLocallySmallOfSmallElemIio
Ordinal.small_Iio
EssentiallySmall.of_le
limitsClosure_monotone
isoClosure_strictLimitsClosureIter_eq_limitsClosure 📖mathematicalHasCardinalLTisoClosure
strictLimitsClosureIter
Ordinal
Ordinal.instLinearOrder
Ordinal.instSuccOrder
Ordinal.wellFoundedLT
Cardinal.ord
limitsClosure
le_antisymm
Ordinal.wellFoundedLT
isoClosure_le_iff
instIsClosedUnderIsomorphismsLimitsClosure
strictLimitsClosureIter_le_limitsClosure
strictLimitsClosureStep_strictLimitsClosureIter_eq_self
limitsOfShape_isoClosure
isoClosure_strictLimitsOfShape
strictLimitsClosureStep.eq_1
monotone_isoClosure
LE.le.trans
le_trans
le_refl
le_iSup
le_sup_right
limitsClosure_le
instIsClosedUnderIsomorphismsIsoClosure
le_strictLimitsClosureIter
le_isoClosure
le_limitsClosure 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
limitsClosure
le_strictLimitsClosureIter 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictLimitsClosureIter
transfiniteIterate_bot
monotone_transfiniteIterate
le_strictLimitsClosureStep
bot_le
le_strictLimitsClosureStep 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictLimitsClosureStep
le_sup_left
limitsClosure_isoClosure 📖mathematicallimitsClosure
isoClosure
le_antisymm
limitsClosure_le
instIsClosedUnderIsomorphismsLimitsClosure
instIsClosedUnderLimitsOfShapeLimitsClosure
isoClosure_le_iff
le_limitsClosure
limitsClosure_monotone
le_isoClosure
limitsClosure_le 📖mathematicalIsClosedUnderLimitsOfShape
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
limitsClosureprop_of_iso
prop_of_isLimit
limitsClosure_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
limitsClosurelimitsClosure_le
instIsClosedUnderIsomorphismsLimitsClosure
instIsClosedUnderLimitsOfShapeLimitsClosure
LE.le.trans
le_limitsClosure
strictLimitsClosureIter_le_limitsClosure 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictLimitsClosureIter
limitsClosure
transfiniteIterate_bot
IsMin.eq_bot
strictLimitsClosureIter.eq_1
transfiniteIterate_succ
strictLimitsClosureStep.eq_1
sup_le_iff
iSup_le_iff
LE.le.trans
strictLimitsOfShape_le_limitsOfShape
limitsOfShape_monotone
IsClosedUnderLimitsOfShape.limitsOfShape_le
instIsClosedUnderLimitsOfShapeLimitsClosure
transfiniteIterate_limit
strictLimitsClosureStep_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictLimitsClosureStepLE.le.trans
le_sup_left
strictLimitsOfShape_monotone
le_iSup
le_sup_right
strictLimitsClosureStep_strictLimitsClosureIter_eq_self 📖mathematicalHasCardinalLTstrictLimitsClosureStep
strictLimitsClosureIter
Ordinal
Ordinal.instLinearOrder
Ordinal.instSuccOrder
Ordinal.wellFoundedLT
Cardinal.ord
Fact.out
HasCardinalLT.small
le_antisymm
Ordinal.wellFoundedLT
Ordinal.iSup_lt_ord
Cardinal.IsRegular.cof_eq
hasCardinalLT_iff_cardinal_mk_lt
hasCardinalLT_iff_of_equiv
Equiv.surjective
le_ciSup
Ordinal.bddAbove_range
monotone_transfiniteIterate
le_strictLimitsClosureStep
Order.succ_le_iff
Ordinal.instNoMaxOrder
transfiniteIterate_succ
transfiniteIterate_limit
Cardinal.isSuccLimit_ord
Cardinal.IsRegular.aleph0_le

---

← Back to Index