Documentation Verification Report

LimitsOfShape

📁 Source: Mathlib/CategoryTheory/ObjectProperty/LimitsOfShape.lean

Statistics

MetricCount
DefinitionsClosedUnderLimitsOfShape, IsClosedUnderLimitsOfShape, LimitOfShape, limit, ofIso, ofLE, reindex, toLimitPresentation, toStructuredArrow, limitsOfShape, strictLimitsOfShape
11
Theoremslimit, closedUnderLimitsOfShape_of_limit, inverseImage, limitsOfShape_le, mk', of_equivalence, limitsOfShape, ofIso_toLimitPresentation, ofLE_toLimitPresentation, prop, prop_diag_obj, reindex_toLimitPresentation, toStructuredArrow_map, toStructuredArrow_obj, instEssentiallySmallLimitsOfShapeOfSmallOfSmallOfLocallySmall, instIsClosedUnderIsomorphismsLimitsOfShape, instSmallStrictLimitsOfShapeOfSmallOfLocallySmall, isClosedUnderLimitsOfShape_iff, isClosedUnderLimitsOfShape_iff_of_equivalence, isClosedUnderLimitsOfShape_inverseImage_iff, isoClosure_strictLimitsOfShape, limitsOfShape_congr, limitsOfShape_isoClosure, limitsOfShape_le_of_initial, limitsOfShape_monotone, prop_limit, prop_of_isLimit, prop_pi, strictLimitsOfShape_le_limitsOfShape, strictLimitsOfShape_monotone
30
Total41

CategoryTheory.Limits

Definitions

NameCategoryTheorems
ClosedUnderLimitsOfShape 📖MathDef

Theorems

NameKindAssumesProvesValidatesDepends On
closedUnderLimitsOfShape_of_limit 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.strictLimitsOfShape
CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShapeCategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape.mk'

CategoryTheory.Limits.ClosedUnderLimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
limit 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Limits.limitCategoryTheory.ObjectProperty.prop_limit

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
IsClosedUnderLimitsOfShape 📖CompData
34 mathmath: instIsClosedUnderLimitsOfShapeUnopOppositeOfIsClosedUnderColimitsOfShape, isClosedUnderColimitsOfShape_iff_op, CategoryTheory.Limits.isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair, CategoryTheory.instIsClosedUnderLimitsOfShapeFunctorOppositeTypeIsIndObjectDiscreteOfHasLimitsOfShape, CategoryTheory.Limits.closedUnderLimitsOfShape_walkingParallelPair_isIndObject, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, isClosedUnderLimitsOfShape_op_iff_unop, CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful, IsClosedUnderLimitsOfShape.mk', CategoryTheory.CostructuredArrow.closedUnderLimitsOfShape_discrete_empty, instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape_1, IsClosedUnderFiniteProducts.isClosedUnderLimitsOfShape, isClosedUnderLimitsOfShape_inverseImage_iff, isClosedUnderLimitsOfShape_of_preservesLimitsOfShape_ι, CategoryTheory.Over.closedUnderLimitsOfShape_pullback, isClosedUnderColimitsOfShape_op_iff_unop, CategoryTheory.Over.closedUnderLimitsOfShape_discrete_empty, instIsClosedUnderLimitsOfShapeDiscreteOfIsClosedUnderFiniteProductsOfFinite, instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape, instIsClosedUnderLimitsOfShapeUnopOfIsClosedUnderColimitsOfShapeOpposite, instIsClosedUnderLimitsOfShapeLimitsClosure, IsClosedUnderLimitsOfShape.inverseImage, isClosedUnderColimitsOfShape_op_iff_op, isClosedUnderLimitsOfShape_op_iff_op, instIsClosedUnderLimitsOfShapeDiscretePEmptyOfContainsZeroOfIsClosedUnderIsomorphisms, CategoryTheory.MorphismProperty.instIsClosedUnderLimitsOfShapeIsLocal, isClosedUnderColimitsOfShape_iff_unop, isClosedUnderLimitsOfShape_iff_of_equivalence, isClosedUnderLimitsOfShape_iff, IsClosedUnderLimitsOfShape.of_equivalence, isClosedUnderLimitsOfShape_iff_unop, CategoryTheory.Limits.closedUnderLimitsOfShape_of_limit, CategoryTheory.MonoOver.instIsClosedUnderLimitsOfShapeOverIsMono, isClosedUnderLimitsOfShape_iff_op
LimitOfShape 📖CompData
limitsOfShape 📖CompOp
15 mathmath: colimitsOfShape_op, limitsOfShape_isoClosure, limitsOfShape_op, LimitOfShape.limitsOfShape, instEssentiallySmallLimitsOfShapeOfSmallOfSmallOfLocallySmall, instIsClosedUnderIsomorphismsLimitsOfShape, strictLimitsOfShape_le_limitsOfShape, limitsOfShape_eq_unop_colimitsOfShape, isoClosure_strictLimitsOfShape, limitsOfShape_monotone, limitsOfShape_congr, colimitsOfShape_eq_unop_limitsOfShape, IsClosedUnderLimitsOfShape.limitsOfShape_le, limitsOfShape_le_of_initial, isClosedUnderLimitsOfShape_iff
strictLimitsOfShape 📖CompData
4 mathmath: strictLimitsOfShape_le_limitsOfShape, strictLimitsOfShape_monotone, isoClosure_strictLimitsOfShape, instSmallStrictLimitsOfShapeOfSmallOfLocallySmall

Theorems

NameKindAssumesProvesValidatesDepends On
instEssentiallySmallLimitsOfShapeOfSmallOfSmallOfLocallySmall 📖mathematicalEssentiallySmall
limitsOfShape
isoClosure_strictLimitsOfShape
instEssentiallySmallIsoClosure
instEssentiallySmallOfSmall
instSmallStrictLimitsOfShapeOfSmallOfLocallySmall
instIsClosedUnderIsomorphismsLimitsOfShape 📖mathematicalIsClosedUnderIsomorphisms
limitsOfShape
instSmallStrictLimitsOfShapeOfSmallOfLocallySmall 📖mathematicalSmall
strictLimitsOfShape
small_of_surjective
small_subtype
CategoryTheory.instSmallFunctorOfLocallySmall
instSmallFullSubcategoryOfSmall
CategoryTheory.locallySmall_fullSubcategory
FullSubcategory.property
isClosedUnderLimitsOfShape_iff 📖mathematicalIsClosedUnderLimitsOfShape
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
limitsOfShape
isClosedUnderLimitsOfShape_iff_of_equivalence 📖mathematicalIsClosedUnderLimitsOfShapelimitsOfShape_congr
isClosedUnderLimitsOfShape_inverseImage_iff 📖mathematicalIsClosedUnderLimitsOfShape
inverseImage
CategoryTheory.Equivalence.functor
prop_iff_of_iso
IsClosedUnderLimitsOfShape.inverseImage
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Equivalence.isEquivalence_functor
isoClosure_strictLimitsOfShape 📖mathematicalisoClosure
strictLimitsOfShape
limitsOfShape
le_antisymm
isoClosure_le_iff
instIsClosedUnderIsomorphismsLimitsOfShape
strictLimitsOfShape_le_limitsOfShape
CategoryTheory.Limits.LimitPresentation.hasLimit
LimitOfShape.prop_diag_obj
limitsOfShape_congr 📖mathematicallimitsOfShapele_antisymm
limitsOfShape_le_of_initial
CategoryTheory.Functor.initial_of_isLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Equivalence.isEquivalence_functor
limitsOfShape_isoClosure 📖mathematicallimitsOfShape
isoClosure
le_antisymm
LimitOfShape.prop_diag_obj
limitsOfShape_monotone
le_isoClosure
limitsOfShape_le_of_initial 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
limitsOfShape
limitsOfShape_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
limitsOfShape
prop_limit 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Limits.limitprop_of_isLimit
prop_of_isLimit 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Limits.Cone.ptIsClosedUnderLimitsOfShape.limitsOfShape_le
prop_pi 📖mathematicalCategoryTheory.Limits.piObjprop_of_isLimit
strictLimitsOfShape_le_limitsOfShape 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictLimitsOfShape
limitsOfShape
strictLimitsOfShape_monotone 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
strictLimitsOfShape

CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
inverseImage 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape
CategoryTheory.ObjectProperty.inverseImage
CategoryTheory.ObjectProperty.LimitOfShape.prop
limitsOfShape_le 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.limitsOfShape
mk' 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.strictLimitsOfShape
CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShapeCategoryTheory.ObjectProperty.isoClosure_eq_self
CategoryTheory.ObjectProperty.isoClosure_strictLimitsOfShape
CategoryTheory.ObjectProperty.monotone_isoClosure
of_equivalence 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShapeCategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_iff_of_equivalence

CategoryTheory.ObjectProperty.LimitOfShape

Definitions

NameCategoryTheorems
limit 📖CompOp
ofIso 📖CompOp
1 mathmath: ofIso_toLimitPresentation
ofLE 📖CompOp
1 mathmath: ofLE_toLimitPresentation
reindex 📖CompOp
1 mathmath: reindex_toLimitPresentation
toLimitPresentation 📖CompOp
6 mathmath: prop_diag_obj, reindex_toLimitPresentation, ofIso_toLimitPresentation, ofLE_toLimitPresentation, toStructuredArrow_obj, toStructuredArrow_map
toStructuredArrow 📖CompOp
2 mathmath: toStructuredArrow_obj, toStructuredArrow_map

Theorems

NameKindAssumesProvesValidatesDepends On
limitsOfShape 📖mathematicalCategoryTheory.ObjectProperty.limitsOfShape
ofIso_toLimitPresentation 📖mathematicaltoLimitPresentation
ofIso
CategoryTheory.Limits.LimitPresentation.ofIso
ofLE_toLimitPresentation 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
toLimitPresentation
ofLE
prop 📖CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape.limitsOfShape_le
prop_diag_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Limits.LimitPresentation.diag
toLimitPresentation
reindex_toLimitPresentation 📖mathematicaltoLimitPresentation
reindex
CategoryTheory.Limits.LimitPresentation.reindex
toStructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.homMk
CategoryTheory.Functor.obj
CategoryTheory.Limits.LimitPresentation.diag
toLimitPresentation
prop_diag_obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.LimitPresentation.π
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
prop_diag_obj
toStructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.Limits.LimitPresentation.diag
toLimitPresentation
prop_diag_obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.LimitPresentation.π

---

← Back to Index