📁 Source: Mathlib/CategoryTheory/ObjectProperty/Local.lean
isColocal
isLocal
instIsClosedUnderColimitsOfShapeIsColocal
instIsClosedUnderIsomorphismsIsColocal
instIsClosedUnderIsomorphismsIsLocal
instIsClosedUnderLimitsOfShapeIsLocal
isColocal_iff
isLocal_iff
CategoryTheory.ObjectProperty.galoisConnection_isColocal
CategoryTheory.ObjectProperty.le_isColocal_iff
CategoryTheory.ObjectProperty.isColocal_trW
le_isColocal_isColocal
CategoryTheory.ObjectProperty.le_isColocal_isColocal
CategoryTheory.Localization.LeftBousfield.galoisConnection
isRightAdjoint_ι_isLocal
CategoryTheory.OrthogonalReflection.isRightAdjoint_ι
CategoryTheory.Localization.LeftBousfield.le_W_iff
CategoryTheory.OrthogonalReflection.isLocal_isLocal_reflection
CategoryTheory.OrthogonalReflection.leftBousfieldW_isLocal_toSucc
CategoryTheory.OrthogonalReflection.isLocal_reflectionObj
le_isLocal_isLocal
CategoryTheory.OrthogonalReflection.isLocal_isLocal_toSucc
CategoryTheory.ObjectProperty.le_isLocal_iff
CategoryTheory.ObjectProperty.le_isLocal_isLocal
CategoryTheory.OrthogonalReflection.isIso_toSucc_iff
le_leftBousfieldW_isLocal
CategoryTheory.ObjectProperty.galoisConnection_isLocal
isClosedUnderColimitsOfShape_isLocal
isCardinalAccessible_ι_isLocal
CategoryTheory.ObjectProperty.le_isLocal_W
CategoryTheory.ObjectProperty.isLocal_trW
isLocallyPresentable_isLocal
CategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.ObjectProperty.ColimitOfShape.prop_diag_obj
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsColimit.fac_assoc
CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
Function.Bijective.of_comp_iff
Equiv.bijective
Function.Bijective.comp
CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.ObjectProperty.LimitOfShape.prop_diag_obj
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.LimitPresentation.w
CategoryTheory.Limits.IsLimit.fac
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
---
← Back to Index