Documentation Verification Report

Local

📁 Source: Mathlib/CategoryTheory/ObjectProperty/Local.lean

Statistics

MetricCount
DefinitionsisColocal, isLocal
2
TheoremsinstIsClosedUnderColimitsOfShapeIsColocal, instIsClosedUnderIsomorphismsIsColocal, instIsClosedUnderIsomorphismsIsLocal, instIsClosedUnderLimitsOfShapeIsLocal, isColocal_iff, isLocal_iff
6
Total8

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
isColocal 📖CompOp
8 mathmath: instIsClosedUnderIsomorphismsIsColocal, CategoryTheory.ObjectProperty.galoisConnection_isColocal, CategoryTheory.ObjectProperty.le_isColocal_iff, CategoryTheory.ObjectProperty.isColocal_trW, le_isColocal_isColocal, CategoryTheory.ObjectProperty.le_isColocal_isColocal, instIsClosedUnderColimitsOfShapeIsColocal, isColocal_iff
isLocal 📖CompOp
22 mathmath: CategoryTheory.Localization.LeftBousfield.galoisConnection, isRightAdjoint_ι_isLocal, CategoryTheory.OrthogonalReflection.isRightAdjoint_ι, CategoryTheory.Localization.LeftBousfield.le_W_iff, CategoryTheory.OrthogonalReflection.isLocal_isLocal_reflection, CategoryTheory.OrthogonalReflection.leftBousfieldW_isLocal_toSucc, CategoryTheory.OrthogonalReflection.isLocal_reflectionObj, le_isLocal_isLocal, CategoryTheory.OrthogonalReflection.isLocal_isLocal_toSucc, CategoryTheory.ObjectProperty.le_isLocal_iff, CategoryTheory.ObjectProperty.le_isLocal_isLocal, instIsClosedUnderIsomorphismsIsLocal, isLocal_iff, CategoryTheory.OrthogonalReflection.isIso_toSucc_iff, le_leftBousfieldW_isLocal, instIsClosedUnderLimitsOfShapeIsLocal, CategoryTheory.ObjectProperty.galoisConnection_isLocal, isClosedUnderColimitsOfShape_isLocal, isCardinalAccessible_ι_isLocal, CategoryTheory.ObjectProperty.le_isLocal_W, CategoryTheory.ObjectProperty.isLocal_trW, isLocallyPresentable_isLocal

Theorems

NameKindAssumesProvesValidatesDepends On
instIsClosedUnderColimitsOfShapeIsColocal 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape
isColocal
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.ObjectProperty.ColimitOfShape.prop_diag_obj
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsColimit.fac_assoc
instIsClosedUnderIsomorphismsIsColocal 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
isColocal
Function.Bijective.of_comp_iff
Equiv.bijective
CategoryTheory.Category.assoc
Function.Bijective.comp
instIsClosedUnderIsomorphismsIsLocal 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
isLocal
Function.Bijective.of_comp_iff
Equiv.bijective
CategoryTheory.Category.assoc
Function.Bijective.comp
instIsClosedUnderLimitsOfShapeIsLocal 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape
isLocal
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.ObjectProperty.LimitOfShape.prop_diag_obj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Category.id_comp
CategoryTheory.Limits.LimitPresentation.w
CategoryTheory.Limits.IsLimit.fac
isColocal_iff 📖mathematicalisColocal
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
isLocal_iff 📖mathematicalisLocal
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp

---

← Back to Index