Documentation Verification Report

Orthogonal

📁 Source: Mathlib/CategoryTheory/ObjectProperty/Orthogonal.lean

Statistics

MetricCount
DefinitionsleftOrthogonal, rightOrthogonal
2
TheoremsinstContainsZeroLeftOrthogonalOfHasZeroObject, instContainsZeroRightOrthogonalOfHasZeroObject, instIsClosedUnderIsomorphismsLeftOrthogonal, instIsClosedUnderIsomorphismsRightOrthogonal, leftOrthogonal_iff, rightOrthogonal_iff
6
Total8

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
leftOrthogonal 📖CompOp
9 mathmath: instIsTriangulatedLeftOrthogonalOfIsStableUnderShiftInt, isColocal_trW, instIsTriangulatedClosed₂LeftOrthogonal, CochainComplex.IsKProjective.leftOrthogonal, CochainComplex.isKProjective_iff_leftOrthogonal, instIsStableUnderShiftLeftOrthogonal, instContainsZeroLeftOrthogonalOfHasZeroObject, instIsClosedUnderIsomorphismsLeftOrthogonal, leftOrthogonal_iff
rightOrthogonal 📖CompOp
9 mathmath: instContainsZeroRightOrthogonalOfHasZeroObject, CochainComplex.IsKInjective.rightOrthogonal, instIsStableUnderShiftRightOrthogonal, instIsTriangulatedClosed₂RightOrthogonal, instIsClosedUnderIsomorphismsRightOrthogonal, instIsTriangulatedRightOrthogonalOfIsStableUnderShiftInt, rightOrthogonal_iff, CochainComplex.isKInjective_iff_rightOrthogonal, isLocal_trW

Theorems

NameKindAssumesProvesValidatesDepends On
instContainsZeroLeftOrthogonalOfHasZeroObject 📖mathematicalContainsZero
leftOrthogonal
CategoryTheory.Limits.isZero_zero
CategoryTheory.Limits.HasZeroObject.from_zero_ext
instContainsZeroRightOrthogonalOfHasZeroObject 📖mathematicalContainsZero
rightOrthogonal
CategoryTheory.Limits.isZero_zero
CategoryTheory.Limits.HasZeroObject.to_zero_ext
instIsClosedUnderIsomorphismsLeftOrthogonal 📖mathematicalIsClosedUnderIsomorphisms
leftOrthogonal
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.comp_zero
instIsClosedUnderIsomorphismsRightOrthogonal 📖mathematicalIsClosedUnderIsomorphisms
rightOrthogonal
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.zero_comp
leftOrthogonal_iff 📖mathematicalleftOrthogonal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
rightOrthogonal_iff 📖mathematicalrightOrthogonal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero

---

← Back to Index