Documentation Verification Report

Opposites

πŸ“ Source: Mathlib/CategoryTheory/Opposites.lean

Statistics

MetricCount
Definitionsopposite, opposite, leftOp, op, rightOp, unop, leftOp, op, rightOp, leftOp, leftOpComp, leftOpId, leftOpRightOpEquiv, leftOpRightOpIso, op, opComp, opHom, opId, opInv, opUnopEquiv, opUnopIso, rightOp, rightOpComp, rightOpId, rightOpLeftOpIso, unop, unopComp, unopId, unopOpIso, op, unop, op, removeOp, unop, leftOp, op, removeLeftOp, removeOp, removeRightOp, removeUnop, rightOp, unop, decidableEqOfUnop, isoOpEquiv, opEquiv, opOp, opOpEquivalence, unopUnop
48
TheoremsleftOp_counitIso_hom_app, leftOp_counitIso_inv_app, leftOp_functor_map, leftOp_functor_obj, leftOp_inverse_map, leftOp_inverse_obj, leftOp_unitIso_hom_app, leftOp_unitIso_inv_app, op_counitIso, op_functor, op_inverse, op_unitIso, rightOp_counitIso_hom_app, rightOp_counitIso_inv_app, rightOp_functor_map, rightOp_functor_obj, rightOp_inverse_map, rightOp_inverse_obj, rightOp_unitIso_hom_app, rightOp_unitIso_inv_app, unop_counitIso, unop_functor, unop_inverse, unop_unitIso, instEssSurjOppositeLeftOp, instEssSurjOppositeOp, instEssSurjOppositeRightOp, instFaithfulOppositeOp, instFullOppositeOp, instIsEquivalenceOppositeLeftOp, instIsEquivalenceOppositeOp, instIsEquivalenceOppositeRightOp, leftOpComp_hom_app, leftOpComp_inv_app, leftOpId_hom_app, leftOpId_inv_app, leftOpRightOpEquiv_counitIso_hom_app_app, leftOpRightOpEquiv_counitIso_inv_app_app, leftOpRightOpEquiv_functor_map_app, leftOpRightOpEquiv_functor_obj_map, leftOpRightOpEquiv_functor_obj_obj, leftOpRightOpEquiv_inverse_map, leftOpRightOpEquiv_inverse_obj, leftOpRightOpEquiv_unitIso_hom_app, leftOpRightOpEquiv_unitIso_inv_app, leftOpRightOpIso_hom_app, leftOpRightOpIso_inv_app, leftOp_faithful, leftOp_full, leftOp_map, leftOp_obj, opComp_hom_app, opComp_inv_app, opHom_map_app, opHom_obj, opId_hom_app, opId_inv_app, opInv_map, opInv_obj, opUnopEquiv_counitIso, opUnopEquiv_functor, opUnopEquiv_inverse, opUnopEquiv_unitIso, opUnopIso_hom_app, opUnopIso_inv_app, op_map, op_obj, rightOpComp_hom_app, rightOpComp_inv_app, rightOpId_hom_app, rightOpId_inv_app, rightOpLeftOpIso_hom_app, rightOpLeftOpIso_inv_app, rightOp_faithful, rightOp_full, rightOp_leftOp_eq, rightOp_map, rightOp_map_unop, rightOp_obj, unopComp_hom_app, unopComp_inv_app, unopId_hom_app, unopId_inv_app, unopOpIso_hom_app, unopOpIso_inv_app, unop_map, unop_obj, op_hom, op_inv, op_refl, op_symm, op_trans, op_unop, unop_hom, unop_hom_inv_id_app, unop_hom_inv_id_app_assoc, unop_inv, unop_inv_hom_id_app, unop_inv_hom_id_app_assoc, unop_op, unop_refl, unop_symm, unop_trans, op_associator, op_hom, op_inv, op_isoWhiskerLeft, op_isoWhiskerRight, op_leftUnitor, op_refl, op_rightUnitor, op_symm, op_trans, removeOp_hom, removeOp_inv, unop_associator, unop_hom, unop_inv, unop_leftUnitor, unop_refl, unop_rightUnitor, unop_symm, unop_trans, unop_whiskerLeft, unop_whiskerRight, leftOpWhiskerRight, leftOpWhiskerRight_assoc, leftOp_app, leftOp_comp, leftOp_id, op_app, op_comp, op_comp_assoc, op_id, op_whiskerLeft, op_whiskerLeft_assoc, op_whiskerRight, op_whiskerRight_assoc, removeLeftOp_app, removeLeftOp_id, removeOp_app, removeOp_id, removeRightOp_app, removeRightOp_id, removeUnop_app, removeUnop_id, rightOpWhiskerRight, rightOpWhiskerRight_assoc, rightOp_app, rightOp_comp, rightOp_id, unop_app, unop_comp, unop_comp_assoc, unop_id, unop_whiskerLeft, unop_whiskerLeft_assoc, unop_whiskerRight, unop_whiskerRight_assoc, instIsEquivalenceOppositeOpOp, instIsEquivalenceOppositeUnopUnop, isIso_of_op, isIso_op, isIso_op_iff, isIso_unop, isIso_unop_iff, isoOpEquiv_apply, isoOpEquiv_symm_apply, opEquiv_apply, opEquiv_symm_apply, opOpEquivalence_counitIso, opOpEquivalence_functor, opOpEquivalence_inverse, opOpEquivalence_unitIso, opOp_map, opOp_obj, op_comp, op_comp_assoc, op_comp_unop, op_id, op_id_unop, op_inv, subsingleton_of_unop, unopUnop_map, unopUnop_obj, unop_comp, unop_comp_assoc, unop_id, unop_id_op, unop_inv, op_inj, op_unop, unop_inj, unop_mk, unop_op, unop_op'
196
Total244

CategoryTheory

Definitions

NameCategoryTheorems
decidableEqOfUnop πŸ“–CompOpβ€”
isoOpEquiv πŸ“–CompOp
2 mathmath: isoOpEquiv_symm_apply, isoOpEquiv_apply
opEquiv πŸ“–CompOp
4 mathmath: Coyoneda.objOpOp_inv_app, Coyoneda.objOpOp_hom_app, opEquiv_apply, opEquiv_symm_apply
opOp πŸ“–CompOp
22 mathmath: opOp_obj, opOp_map, Pretriangulated.Opposite.OpOpCommShift.iso_inv_app, monoidalOpOp_Ξ΄, Pretriangulated.commShiftIso_opOp_inv_app, Cat.opEquivalence_counitIso, Pretriangulated.commShiftIso_opOp_hom_app_assoc, Pretriangulated.instIsTriangulatedOppositeOpOp, Functor.rightOpId_inv_app, opOpEquivalence_inverse, Cat.opEquivalence_unitIso, instIsEquivalenceOppositeOpOp, Pretriangulated.Opposite.OpOpCommShift.iso_hom_app_assoc, monoidalOpOp_ΞΌ, monoidalOpOp_Ξ·, Pretriangulated.Opposite.OpOpCommShift.iso_inv_app_assoc, monoidalOpOp_Ξ΅, opOpEquivalence_counitIso, Pretriangulated.commShiftIso_opOp_hom_app, Pretriangulated.commShiftIso_opOp_inv_app_assoc, Functor.rightOpId_hom_app, Pretriangulated.Opposite.OpOpCommShift.iso_hom_app
opOpEquivalence πŸ“–CompOp
17 mathmath: Equivalence.leftOp_unitIso_hom_app, Equivalence.rightOp_counitIso_inv_app, Equivalence.leftOp_unitIso_inv_app, Pretriangulated.instIsTriangulatedOppositeOpOpEquivalence, Equivalence.leftOp_counitIso_inv_app, Equivalence.rightOp_unitIso_hom_app, opOpEquivalence_inverse, Adjunction.rightOp_eq, Pretriangulated.instCommShiftOppositeOpOpEquivalenceInt, opOpEquivalence_unitIso, Adjunction.leftOp_eq, Equivalence.rightOp_counitIso_hom_app, instIsMonoidalOppositeOpOpEquivalence, opOpEquivalence_counitIso, Equivalence.rightOp_unitIso_inv_app, Equivalence.leftOp_counitIso_hom_app, opOpEquivalence_functor
unopUnop πŸ“–CompOp
22 mathmath: instIsEquivalenceOppositeUnopUnop, Pretriangulated.Opposite.UnopUnopCommShift.iso_inv_app, unopUnop_obj, Pretriangulated.Opposite.UnopUnopCommShift.iso_inv_app_assoc, Cat.opEquivalence_counitIso, Functor.leftOpId_hom_app, Cat.opEquivalence_unitIso, monoidalUnopUnop_Ξ΅, Pretriangulated.Opposite.UnopUnopCommShift.iso_hom_app_assoc, monoidalUnopUnop_Ξ΄, Pretriangulated.commShiftIso_unopUnop_inv_app, Functor.leftOpId_inv_app, opOpEquivalence_counitIso, unopUnop_map, Pretriangulated.commShiftIso_unopUnop_inv_app_assoc, monoidalUnopUnop_ΞΌ, Pretriangulated.Opposite.UnopUnopCommShift.iso_hom_app, Pretriangulated.commShiftIso_unopUnop_hom_app, Pretriangulated.commShiftIso_unopUnop_hom_app_assoc, monoidalUnopUnop_Ξ·, Pretriangulated.instIsTriangulatedOppositeUnopUnop, opOpEquivalence_functor

Theorems

NameKindAssumesProvesValidatesDepends On
instIsEquivalenceOppositeOpOp πŸ“–mathematicalβ€”Functor.IsEquivalence
Opposite
Category.opposite
opOp
β€”Equivalence.isEquivalence_inverse
instIsEquivalenceOppositeUnopUnop πŸ“–mathematicalβ€”Functor.IsEquivalence
Opposite
Category.opposite
unopUnop
β€”Equivalence.isEquivalence_functor
isIso_of_op πŸ“–mathematicalβ€”IsIsoβ€”IsIso.inv_hom_id
IsIso.hom_inv_id
isIso_op πŸ“–mathematicalβ€”IsIso
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”IsIso.inv_hom_id
IsIso.hom_inv_id
isIso_op_iff πŸ“–mathematicalβ€”IsIso
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”isIso_of_op
isIso_op
isIso_unop πŸ“–mathematicalβ€”IsIso
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”isIso_unop_iff
isIso_unop_iff πŸ“–mathematicalβ€”IsIso
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite
Category.opposite
β€”isIso_op_iff
Quiver.Hom.op_unop
isoOpEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Iso
Opposite
Category.opposite
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
isoOpEquiv
Iso.unop
β€”β€”
isoOpEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Iso
Opposite.unop
Opposite
Category.opposite
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
isoOpEquiv
Iso.op
β€”β€”
opEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Opposite
Quiver.opposite
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
opEquiv
Quiver.Hom.unop
β€”β€”
opEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Opposite
Quiver.opposite
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
opEquiv
Quiver.Hom.op
β€”β€”
opOpEquivalence_counitIso πŸ“–mathematicalβ€”Equivalence.counitIso
Opposite
Category.opposite
opOpEquivalence
Iso.refl
Functor
Functor.category
Functor.comp
opOp
unopUnop
β€”β€”
opOpEquivalence_functor πŸ“–mathematicalβ€”Equivalence.functor
Opposite
Category.opposite
opOpEquivalence
unopUnop
β€”β€”
opOpEquivalence_inverse πŸ“–mathematicalβ€”Equivalence.inverse
Opposite
Category.opposite
opOpEquivalence
opOp
β€”β€”
opOpEquivalence_unitIso πŸ“–mathematicalβ€”Equivalence.unitIso
Opposite
Category.opposite
opOpEquivalence
Iso.refl
Functor
Functor.category
Functor.id
β€”β€”
opOp_map πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
opOp
Quiver.Hom.op
Quiver.opposite
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.op
β€”β€”
opOp_obj πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
opOp
Opposite.op
β€”β€”
op_comp πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
CategoryStruct.comp
Opposite
CategoryStruct.opposite
Opposite.op
β€”β€”
op_comp_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Opposite
CategoryStruct.opposite
Category.toCategoryStruct
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
β€”Category.assoc
op_comp_unop πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Opposite.unop
CategoryStruct.comp
Quiver.Hom.unop
Opposite
CategoryStruct.opposite
β€”β€”
op_id πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
CategoryStruct.id
Opposite
CategoryStruct.opposite
Opposite.op
β€”β€”
op_id_unop πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Opposite.unop
CategoryStruct.id
Opposite
CategoryStruct.opposite
β€”β€”
op_inv πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
inv
Opposite
Category.opposite
Opposite.op
isIso_op
β€”IsIso.eq_inv_of_hom_inv_id
isIso_op
op_comp
IsIso.inv_hom_id
op_id
subsingleton_of_unop πŸ“–mathematicalβ€”Quiver.Hom
Opposite
Quiver.opposite
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”Equiv.subsingleton
unopUnop_map πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
unopUnop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
β€”β€”
unopUnop_obj πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
unopUnop
Opposite.unop
β€”β€”
unop_comp πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
CategoryStruct.comp
Opposite
CategoryStruct.opposite
Opposite.unop
β€”β€”
unop_comp_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Opposite
CategoryStruct.opposite
β€”Category.assoc
unop_id πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
CategoryStruct.id
Opposite
CategoryStruct.opposite
Opposite.unop
β€”β€”
unop_id_op πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Opposite.op
CategoryStruct.id
Opposite
CategoryStruct.opposite
β€”β€”
unop_inv πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
inv
Opposite
Category.opposite
Opposite.unop
isIso_unop
β€”IsIso.eq_inv_of_hom_inv_id
isIso_unop
unop_comp
IsIso.inv_hom_id
unop_id

CategoryTheory.Category

Definitions

NameCategoryTheorems
opposite πŸ“–CompOp
5026 mathmath: CategoryTheory.Functor.IsDenseSubsite.mapPreimage_map_of_fac, CategoryTheory.Sheaf.cartesianMonoidalCategoryLift_val, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_pt, HomotopicalAlgebra.fibration_op_iff, CategoryTheory.Presheaf.instIsCardinalPresentableFunctorOppositeFreeYonedaOfHasColimitsOfSize, CategoryTheory.Comon.tensorObj_comul', Condensed.finYoneda_obj, AlgebraicGeometry.Scheme.toSpecΞ“_apply, CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_map_f, PresheafOfModules.Monoidal.tensorObj_obj, SSet.op_Ξ΄, AlgebraicGeometry.Ξ“_map_morphismRestrict, CategoryTheory.Limits.pushoutIsoOpPullback_inr_hom_assoc, CategoryTheory.CommSq.LiftStruct.op_l, CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο€, AlgebraicGeometry.Scheme.Modules.pushforward_obj_presheaf_map, CochainComplex.acyclic_op, CategoryTheory.Functor.functorHomEquiv_apply_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, CategoryTheory.SimplicialObject.id_left_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_inv_app, CategoryTheory.GrothendieckTopology.W_sheafToPresheaf_map_iff_isIso, PresheafOfModules.instIsRightAdjointPushforwardCompFunctorOppositeRingCatWhiskerLeftOp, CategoryTheory.Adjunction.compUliftCoyonedaIso_hom_app_app_down, CategoryTheory.sheafBotEquivalence_functor, smoothSheafCommRing.ΞΉ_forgetStalk_inv, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_zero, CategoryTheory.uliftCoyonedaEquiv_apply, CategoryTheory.Adjunction.leftOp_unit, CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_app, CategoryTheory.PreOneHypercover.forkOfIsColimit_ΞΉ_map_inj_assoc, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_left, CategoryTheory.instSmallOppositeObjFunctorTypeYoneda, CategoryTheory.PresheafOfGroups.OneCochain.one_ev, CategoryTheory.ShortComplex.HomologyMapData.op_left, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv_naturality_assoc, SSet.RelativeMorphism.image_le, CategoryTheory.Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, CategoryTheory.ShortComplex.LeftHomologyData.op_g', AddCommGrpCat.coyoneda_obj_obj_coe, AlgebraicGeometry.Proj.awayMap_awayToSection_assoc, CategoryTheory.Equivalence.leftOp_unitIso_hom_app, CategoryTheory.linearCoyoneda_obj_additive, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.SimplicialObject.whiskering_obj_map_app, CategoryTheory.instIsEquivalenceOppositeUnopUnop, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Equivalence.preregular_isSheaf_iff, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, AlgebraicGeometry.Scheme.coprodPresheafObjIso_hom_fst_assoc, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, CategoryTheory.Functor.natTransEquiv_apply_app, AlgebraicGeometry.Scheme.map_PrimeSpectrum_basicOpen_of_affine, CategoryTheory.uliftCoyonedaIsoCoyoneda_hom_app_app, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.coyonedaEquiv_symm_app_apply, CategoryTheory.Presheaf.instIsLocallySurjectiveHomWhiskerRightOppositeForget, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, CategoryTheory.Functor.leibnizPullback_obj_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionRight_unop, CategoryTheory.Sheaf.Ξ“HomEquiv_naturality_left_symm, CategoryTheory.isIso_sheafificationAdjunction_counit, SSet.Subcomplex.preimage_eq_top_iff, AlgebraicGeometry.StructureSheaf.instIsScalarTowerCarrierStalkCommRingCatStructurePresheafInCommRingCatCarrierAbPresheafOpensCarrierTopModuleStructurePresheaf, CategoryTheory.kernelUnopOp_inv, CategoryTheory.Sheaf.isLocallySurjective_sheafToPresheaf_map_iff, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_X₃, CategoryTheory.preservesFiniteLimits_iff_lan_preservesFiniteLimits, CategoryTheory.GrothendieckTopology.Cover.index_left, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_hom_app, CategoryTheory.Localization.isLocalization_op, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Equivalence.sheafCongr.counitIso_hom_app_val_app, CategoryTheory.Limits.preservesColimitsOfShape_rightOp, AlgebraicGeometry.Spec.toPresheafedSpace_obj, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, AlgebraicGeometry.IsAffineOpen.isoSpec_inv_appTop, LightProfinite.proj_comp_transitionMap, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo, CategoryTheory.ULiftYoneda.instFullFunctorOppositeTypeUliftYoneda, CategoryTheory.yoneda_preservesLimit, CategoryTheory.ObjectProperty.instIsClosedUnderLimitsOfShapeUnopOppositeOfIsClosedUnderColimitsOfShape, CategoryTheory.opHom_apply, LightProfinite.Extend.functorOp_obj, AlgebraicGeometry.Scheme.zeroLocus_iInf, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_Ο€, AlgebraicGeometry.Scheme.Modules.pushforwardId_inv_app_app, AddCommMonCat.coyoneda_obj_obj_coe, AlgebraicGeometry.IsAffineOpen.map_fromSpec_assoc, LightCondensed.lanPresheafIso_hom, CategoryTheory.additive_yonedaObj, CategoryTheory.Equivalence.symmEquivFunctor_obj, AlgebraicGeometry.IsAffineOpen.isLocalization_of_eq_basicOpen, CategoryTheory.DinatTrans.dinaturality_assoc, SSet.stdSimplex.mem_nonDegenerate_iff_strictMono, SSet.stdSimplex.coe_triangle_down_toOrderHom, AlgebraicGeometry.Etale.etale_appLE, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄_self_assoc, CategoryTheory.Presheaf.isSheaf_of_isTerminal, CategoryTheory.ShortComplex.hasRightHomology_iff_op, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ΞΉ, CategoryTheory.ObjectProperty.colimitsOfShape_op, AlgebraicGeometry.Scheme.Hom.germ_stalkMap_assoc, AlgebraicGeometry.LocallyQuasiFinite.quasiFinite_appLE, TopCat.presheafToType_map, CategoryTheory.Functor.leftOpRightOpEquiv_functor_obj_map, TopCat.Sheaf.interUnionPullbackCone_snd, CategoryTheory.linearCoyoneda_map_app, CategoryTheory.linearCoyoneda_obj_obj_carrier, LightCondensed.isoFinYonedaComponents_hom_apply, CategoryTheory.ShortComplex.Splitting.op_r, CategoryTheory.ShortComplex.SnakeInput.op_Ξ΄, CategoryTheory.Limits.isLimitConeRightOpOfCocone_lift, CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_iff_op, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, CategoryTheory.Limits.preservesFiniteCoproducts_rightOp, SSet.Truncated.tensor_map_apply_snd, CategoryTheory.ShortComplex.cyclesOpIso_inv_op_iCycles_assoc, CategoryTheory.MorphismProperty.instHasOfPrecompPropertyOppositeOpOfHasOfPostcompProperty, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd, AlgebraicGeometry.PresheafedSpace.stalkMap_germ, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ€_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, CategoryTheory.op_hom_leftUnitor, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app, CategoryTheory.shrinkYoneda_map, CategoryTheory.isSeparator_iff_faithful_preadditiveCoyoneda, CategoryTheory.regularTopology.equalizerCondition_precomp_of_preservesPullback, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_two, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, AlgebraicGeometry.LocallyRingedSpace.Ξ“_def, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, AlgebraicGeometry.Scheme.IsQuasiAffine.toIsImmersion, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.ShortComplex.homologyOpIso_hom_naturality, AlgebraicGeometry.StructureSheaf.globalSectionsIso_inv, PresheafOfModules.pullback_id_comp, AlgebraicGeometry.Scheme.ofRestrict_appIso, CategoryTheory.isSeparating_unop_iff, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.NatTrans.unop_whiskerLeft, ContinuousMap.yonedaPresheaf'_obj, CategoryTheory.sheafOver_val, AlgebraicGeometry.RingedSpace.basicOpen_res, CategoryTheory.Comma.opFunctor_obj, AlgebraicGeometry.Scheme.Hom.app_invApp'_assoc, CategoryTheory.Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ξ©β‚€, AlgebraicGeometry.LocallyRingedSpace.restrict_presheaf_obj, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_Ο†Q, CategoryTheory.Limits.multicospanIndexEnd_fst, AlgebraicTopology.DoldKan.Οƒ_comp_PInfty_assoc, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_id, CategoryTheory.Equalizer.Sieve.equalizer_sheaf_condition, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄''_assoc, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv, CategoryTheory.Limits.preservesFiniteLimits_of_leftOp, CategoryTheory.Pretriangulated.Opposite.mem_distinguishedTriangles_iff, LightCondensed.ihomPoints_apply, AlgebraicGeometry.Scheme.app_eq, CategoryTheory.shrinkYonedaEquiv_comp, CategoryTheory.ShortComplex.LeftHomologyData.unop_p, CategoryTheory.eval_app, CategoryTheory.OverPresheafAux.costructuredArrowPresheafToOver_map, CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection', HomotopicalAlgebra.instWeakEquivalenceOppositeOp, CategoryTheory.Square.unop_Xβ‚‚, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberDesc, CategoryTheory.Localization.isoOfHom_unop, CategoryTheory.Groupoid.invEquivalence_inverse_map, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_of_gt, CategoryTheory.ObjectProperty.essentiallySmall_unop_iff, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Limits.Cone.unop_ΞΉ, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, CategoryTheory.GrothendieckTopology.Cover.index_fst, SSet.horn₃₁.desc.multicofork_Ο€_two, AlgebraicGeometry.LocallyOfFiniteType.finiteType_of_affine_subset, AlgebraicGeometry.Scheme.zeroLocus_empty_eq_univ, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_functor, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_map, CategoryTheory.Limits.widePushoutShapeUnop_obj, CategoryTheory.Subfunctor.isSeparated, AlgebraicGeometry.StructureSheaf.comap_id, CategoryTheory.OverPresheafAux.unitAux_hom, Profinite.Extend.cocone_pt, CategoryTheory.isCofiltered_op_of_isFiltered, CategoryTheory.cocones_map_app_app, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.IndParallelPairPresentation.hf, CategoryTheory.Sieve.functor_obj, PresheafOfModules.add_app, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₁, CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection, SSet.ΞΉβ‚€_snd_assoc, CategoryTheory.Limits.widePushoutShapeOpEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_Ο€_app, CategoryTheory.Functor.sheafPushforwardContinuousComp'_inv_app_val_app, condensedSetToTopCat_obj_carrier, CategoryTheory.Functor.rightOp_map, SSet.Subcomplex.mem_ofSimplex_obj_iff, AlgebraicGeometry.instIsIsoSchemeCoprodComparisonOppositeCommRingCatSpec, CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.op, CategoryTheory.Limits.preservesLimits_of_leftOp, CondensedMod.IsSolid.isIso_solidification_map, CategoryTheory.instFullMonFunctorOppositeMonCatYonedaMon, AlgebraicGeometry.IsAffineOpen.map_fromSpec, AlgebraicGeometry.StructureSheaf.const_mul_rev, CategoryTheory.NonemptyParallelPairPresentationAux.hf, AlgebraicGeometry.Ξ“Spec.isIso_adjunction_counit, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, AlgebraicGeometry.Spec_Ξ“_naturality, SSet.degenerate_eq_top_of_hasDimensionLT, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, PresheafOfModules.toPresheaf_preservesFiniteLimits, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_Spec_fromSpecStalk_assoc, TopCat.Presheaf.Pushforward.id_inv_app, CategoryTheory.MorphismProperty.LeftFraction.op_map, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, AlgebraicGeometry.AffineScheme.Spec_faithful, CategoryTheory.Limits.pushoutIsoOpPullback_inl_hom, AlgebraicGeometry.IsLocallyArtinian.isArtinianRing_presheaf_obj, SSet.Truncated.mapHomotopyCategory_homMk, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_naturality, TopCat.Presheaf.germ_stalkPullbackHom, CategoryTheory.orderDualEquivalence_unitIso, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_top, skyscraperPresheaf_obj, AlgebraicGeometry.LocallyRingedSpace.notMem_prime_iff_unit_in_stalk, CategoryTheory.opOp_obj, AlgebraicGeometry.Scheme.restrictFunctorΞ“_inv_app, CategoryTheory.op_inv_associator, Condensed.hom_ext_iff, CategoryTheory.SimplicialObject.Οƒ_naturality_assoc, CategoryTheory.Limits.walkingParallelPairOp_left, CategoryTheory.Arrow.augmentedCechNerve_hom_app, CategoryTheory.shrinkYonedaEquiv_symm_map_assoc, AlgebraicGeometry.Scheme.Modules.restrictAdjunction_counit_app_app, CategoryTheory.ShortComplex.op_g, CategoryTheory.Limits.ΞΉ_comp_colimitOpIsoOpLimit_hom_assoc, CategoryTheory.GrothendieckTopology.diagram_obj, AlgebraicGeometry.instIsDomainCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopOfIsIntegral, AlgebraicGeometry.instPreservesLimitSchemeOppositeCommRingCatRightOpΞ“OfIsAffineHomMapOfCompactSpaceOfQuasiSeparatedSpaceCarrierCarrierObj, LightCondensed.forget_obj_val_map, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_apply, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CategoryTheory.lan_preservesFiniteLimits_of_flat, AlgebraicTopology.DoldKan.MorphComponents.preComp_a, AlgebraicGeometry.StructureSheaf.comap_comp, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_app_apply, AlgebraicGeometry.LocallyRingedSpace.restrictStalkIso_hom_eq_germ, CategoryTheory.Limits.parallelPairOpIso_inv_app_zero, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape, CategoryTheory.Arrow.mapCechNerve_app, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, SSet.degenerate_iff_of_mono, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_eq_iff', CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.ShortComplex.unop_Xβ‚‚, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, CategoryTheory.ShortComplex.ShortExact.op, CategoryTheory.Functor.hom_map, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, PresheafOfModules.Sheafify.add_smul, CategoryTheory.Functor.uliftCoyonedaCoreprXIso_hom_app, CategoryTheory.NatTrans.removeLeftOp_id, CategoryTheory.eval_map, CategoryTheory.isCoseparator_iff_faithful_preadditiveYoneda, Profinite.Extend.functorOp_map, AlgebraicGeometry.functionField_isFractionRing_of_isAffineOpen, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms, AlgebraicGeometry.Scheme.IdealSheafData.ideal_sSup, AlgebraicGeometry.Scheme.fromSpecStalk_toSpecΞ“_assoc, AlgebraicGeometry.Scheme.Modules.pushforwardCongr_hom_app_app, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, PresheafOfModules.restrictScalars_map_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomRight, CategoryTheory.MorphismProperty.LeftFraction.op_X', AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, CategoryTheory.NatIso.op_rightUnitor, CategoryTheory.op_tensorHom, SSet.Οƒ_mem_degenerate, AlgebraicGeometry.Scheme.Modules.pushforward_obj_obj, SSet.ofSimplex_le_skeleton, CategoryTheory.Comon.MonOpOpToComon_obj, SSet.Subcomplex.toSSetFunctor_map, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_inv_app, AlgebraicGeometry.Spec.locallyRingedSpaceObj_presheaf_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_inverse, SSet.iSup_subcomplexOfSimplex_prod_eq_top, CategoryTheory.Equivalence.rightOp_counitIso_inv_app, AlgebraicGeometry.LocallyRingedSpace.restrictStalkIso_inv_eq_germ_assoc, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_invApp, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_base, HomologicalComplex.op_d, CategoryTheory.Functor.unopOpIso_inv_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_naturality, PresheafOfModules.epi_iff_surjective, SSet.Truncated.Path.mkβ‚‚_arrow, AlgebraicGeometry.StructureSheaf.const_self, CategoryTheory.Limits.widePushoutShapeOpEquiv_inverse, AlgebraicGeometry.Scheme.mem_basicOpen', LightCondensed.ihomPoints_symm_comp, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, CategoryTheory.Limits.preservesFiniteLimits_op, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_id, CategoryTheory.Retract.op_i, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map', CategoryTheory.yoneda_map_app, CategoryTheory.Functor.WellOrderInductionData.map_succ, HomologicalComplex.opSymm_d, CategoryTheory.unop_tensorHom, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.typeEquiv_functor_obj_val_obj, AlgebraicGeometry.Scheme.zeroLocus_eq_univ_iff_subset_nilradical, CategoryTheory.Limits.IsZero.op, AlgebraicGeometry.Scheme.Opens.topIso_inv, CategoryTheory.OverPresheafAux.restrictedYoneda_map, SSet.stdSimplex.objβ‚€Equiv_symm_apply, CategoryTheory.whiskering_linearCoyoneda, CategoryTheory.Discrete.opposite_functor_obj_as, CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app, CategoryTheory.Equivalence.leftOp_unitIso_inv_app, CategoryTheory.Limits.Cone.equiv_inv_pt, CategoryTheory.ShortComplex.instCategoryWithHomologyOpposite, CategoryTheory.unopUnop_obj, PresheafOfModules.pullback_comp_id, AlgebraicGeometry.Proj.pow_apply, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_inverse, CategoryTheory.instPreservesFiniteProductsOppositeVal, CategoryTheory.yonedaGrp_obj, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionObj, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, CategoryTheory.op_mono_of_epi, PresheafOfModules.evaluation_preservesColimitsOfShape, CategoryTheory.Comon.ComonToMonOpOp_obj, SSet.finite_iSup_iff, CategoryTheory.yonedaCommGrpGrpObj_map, TopCat.Presheaf.SheafConditionEqualizerProducts.piOpens.hom_ext_iff, CategoryTheory.Functor.WellOrderInductionData.Extension.ofLE_val, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomRight, PresheafOfModules.comp_app, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_obj_obj, CategoryTheory.Square.unop_X₁, CategoryTheory.ShortComplex.RightHomologyMapData.op_Ο†H, CategoryTheory.nerve.functorOfNerveMap_map, SSet.opFunctorCompOpFunctorIso_inv_app_app, CategoryTheory.Pretriangulated.shiftFunctorZero_op_inv_app, HomologicalComplex.unopFunctor_obj, CategoryTheory.HasLiftingProperty.op, LightCondSet.continuous_coinducingCoprod, CategoryTheory.Join.inclRightCompOpEquivInverse_inv_app_op, CategoryTheory.Injective.instProjectiveOppositeOp, CategoryTheory.Equivalence.leftOp_functor_obj, CategoryTheory.Presieve.isSheaf_iff_preservesFiniteProducts, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_assoc, SSet.Truncated.StrictSegal.spine_spineToSimplex, CategoryTheory.Presheaf.coconeOfRepresentable_pt, CategoryTheory.Pseudofunctor.CoGrothendieck.map_comp_eq, CategoryTheory.Limits.end_.map_Ο€, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_obj_obj, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_hom_app_app, CategoryTheory.preservesFiniteColimits_liftToFinset, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, CategoryTheory.WithTerminal.opEquiv_inverse_obj, CategoryTheory.Limits.opProdIsoCoprod_hom_snd_assoc, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.map_epi_on_summand_id_assoc, CategoryTheory.Presieve.isSeparatedFor_singleton, CategoryTheory.Functor.IsLeftAdjoint.op, SSet.Subcomplex.range_eq_ofSimplex, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_apply, CategoryTheory.Limits.preservesColimits_rightOp, CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_inv_app_app, CategoryTheory.Adjunction.compCoyonedaIso_inv_app_app, CategoryTheory.Pretriangulated.Opposite.mem_distinguishedTriangles_iff', CategoryTheory.isIso_unop_iff, CategoryTheory.Limits.IsCofiltered.sequentialFunctor_initial, CategoryTheory.CosimplicialObject.Augmented.leftOp_right, CochainComplex.exactAt_op, SSet.spine_map_subinterval, CategoryTheory.Limits.preservesColimits_of_unop, Opens.mayerVietorisSquare_X₃, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, CategoryTheory.Limits.IsIndObject.isFiltered, CategoryTheory.Equivalence.rightOp_functor_map, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit, CategoryTheory.OverPresheafAux.restrictedYoneda_obj, LightCondensed.finYoneda_obj, AlgebraicGeometry.Scheme.inv_app, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceΞ΄_singleTriangle_apply, LightCondensed.isoFinYoneda_inv_app, CategoryTheory.ObjectProperty.isDetecting_op_iff, CategoryTheory.ObjectProperty.instContainsZeroOppositeOp, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheaf_obj, AlgebraicGeometry.Scheme.Hom.id_appTop, CategoryTheory.Functor.RepresentableBy.homEquiv_eq, SSet.nonDegenerate_iff_of_mono, CategoryTheory.Presheaf.imageSieve_app, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, CondensedMod.isDiscrete_tfae, AlgebraicGeometry.Proj.basicOpenIsoAway_hom, CategoryTheory.linearYoneda_obj_map, CategoryTheory.Limits.coend.map_id, smoothSheafCommRing.ΞΉ_evalHom_apply, CategoryTheory.PreOneHypercover.multicospanIndex_fst, CategoryTheory.NatIso.unop_rightUnitor, CategoryTheory.Pretriangulated.instIsTriangulatedOppositeOpOpEquivalence, CategoryTheory.NatTrans.unop_comp_assoc, TopCat.Presheaf.germ_exist_of_isBasis, PresheafOfModules.homEquivOfIsLocallyBijective_symm_apply, CategoryTheory.Limits.widePullbackShapeUnop_map, CategoryTheory.prodOpEquiv_inverse_map, CategoryTheory.ShortComplex.opMap_τ₁, CategoryTheory.Functor.commShiftOp_iso_eq, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, CategoryTheory.Limits.PushoutCocone.unop_Ο€_app, CategoryTheory.ShiftedHom.opEquiv_symm_add, CategoryTheory.Equivalence.precoherent_isSheaf_iff_of_essentiallySmall, CategoryTheory.PresheafOfGroups.Cochainβ‚€.inv_apply, AlgebraicGeometry.Scheme.zeroLocus_mul, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_inv_app, CategoryTheory.Presheaf.functorToRepresentables_map, CategoryTheory.op_whiskerRight, SSet.tensorHom_app_apply, CategoryTheory.ShortComplex.Homotopy.unop_hβ‚‚, CategoryTheory.isConnected_op_iff_isConnected, CategoryTheory.simplicialCosimplicialEquiv_inverse_map, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, AlgebraicGeometry.Proj.mul_apply, AlgebraicGeometry.StructureSheaf.comap_id', CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Limits.IndObjectPresentation.extend_ΞΉ_app_app, CategoryTheory.unop_inv_associator, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, SimplicialObject.opFunctor_obj_Οƒ, CategoryTheory.Limits.Fork.unop_ΞΉ_app_zero, CategoryTheory.Presieve.isSheaf_comp_uliftFunctor, CategoryTheory.Limits.preservesLimitsOfShape_leftOp, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, SSet.Edge.map_id, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff, AlgebraicGeometry.Scheme.Modules.germ_restrictStalkNatIso_inv_app, CategoryTheory.Limits.isClosedUnderLimitsOfShape_isIndObject_walkingParallelPair, CategoryTheory.Limits.SequentialProduct.cone_Ο€_app_comp_Pi_Ο€_pos_assoc, CategoryTheory.IsPullback.op, CategoryTheory.Limits.opCompYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Yoneda.naturality, CategoryTheory.GrothendieckTopology.yoneda_map_val, CondensedSet.hom_naturality_apply, CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, CategoryTheory.nerve.homEquiv_edgeMk_map_nerveMap, CategoryTheory.Comon.Comon_EquivMon_OpOp_counitIso, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, CategoryTheory.Functor.WellOrderInductionData.Extension.map_zero, SSet.S.equivElements_symm_apply_dim, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CompHausLike.LocallyConstant.adjunction_counit, CategoryTheory.Limits.hasLimit_leftOp_of_hasColimit, CategoryTheory.MorphismProperty.IsMultiplicative.of_unop, AlgebraicGeometry.Scheme.ideal_ker_le_ker_Ξ“SpecIso_inv_comp, SSet.Truncated.Edge.map_fst, CategoryTheory.instFaithfulGrpFunctorOppositeGrpCatYonedaGrp, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm_assoc, HomologicalComplex.opcyclesOpIso_inv_naturality_assoc, smoothSheafCommRing.eval_germ, CategoryTheory.Limits.Cocone.unop_Ο€, PresheafOfModules.pushforward_map_app_apply, CategoryTheory.preadditiveYonedaObj_obj_carrier, LightCondensed.finYoneda_map, CategoryTheory.Presheaf.isSeparating, SimplicialObject.Splitting.cofan_inj_epi_naturality_assoc, CategoryTheory.sheafificationNatIso_inv_app_val, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_Ο€_apply, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_map, AlgebraicGeometry.Scheme.isoSpec_inv_toSpecΞ“, SSet.Subcomplex.image_obj, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, CategoryTheory.Functor.cones_map_app, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inr_assoc, CategoryTheory.ShortComplex.LeftHomologyData.unop_ΞΉ, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.instIsIsoInvApp, CategoryTheory.isCodetector_unop_iff, CategoryTheory.NatTrans.leftOp_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, SSet.horn.yonedaEquiv_ΞΉ, CategoryTheory.Functor.closedSieves_obj, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_apply, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableByβ‚‚_homEquiv, CategoryTheory.Equivalence.leftOp_counitIso_inv_app, CategoryTheory.NatTrans.unop_whiskerLeft_assoc, AlgebraicGeometry.StructureSheaf.const_add, SSet.Subcomplex.range_eq_top, CategoryTheory.Limits.coyonedaCompLimIsoCones_inv_app, AlgebraicGeometry.PresheafedSpace.GlueData.ΞΉIsOpenImmersion, PresheafOfModules.sections_property, CategoryTheory.Subfunctor.ofSection_eq_range, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_X₁, HomologicalComplex.instHasHomologyOppositeOp, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, AlgebraicGeometry.isIso_Ξ“Spec_adjunction_unit_app_basicOpen, AlgebraicGeometry.isNoetherian_iff_of_finite_affine_openCover, CategoryTheory.Limits.multispanIndexCoend_right, CategoryTheory.OverPresheafAux.YonedaCollection.mapβ‚‚_yonedaEquivFst, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one, CategoryTheory.SimplicialObject.Truncated.whiskering_map_app_app, Condensed.discrete_map, PresheafOfModules.toSheafify_app_apply', CategoryTheory.isConnected_op, CategoryTheory.opOp_map, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ΞΉ_assoc, PresheafOfModules.instPreservesLimitsOfShapeModuleCatCarrierObjOppositeRingCatEvaluation, CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, HomotopicalAlgebra.instFibrationOppositeOpOfCofibration, CategoryTheory.Equalizer.firstObjEqFamily_inv, AlgebraicGeometry.SmoothOfRelativeDimension.exists_isStandardSmoothOfRelativeDimension, CategoryTheory.unop_mono_iff, CategoryTheory.yonedaEquiv_apply, AlgebraicGeometry.Scheme.IdealSheafData.ideal_le_comap_ideal, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_Ξ΄β‚€_assoc, CategoryTheory.Limits.IndObjectPresentation.instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, CategoryTheory.Functor.opInv_obj, CategoryTheory.Functor.PullbackObjObj.Ο€_fst, CategoryTheory.Functor.WellOrderInductionData.surjective, CategoryTheory.instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, CategoryTheory.IsFiltered.iff_nonempty_limit, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.Comma.opEquiv_counitIso, CategoryTheory.sheafificationNatIso_hom_app_val, SSet.horn₃₂.desc.multicofork_Ο€_one, PresheafOfModules.Derivation.d_map, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.ShortComplex.hasLeftHomology_iff_op, CategoryTheory.ShortComplex.shortExact_iff_op, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_apply, AlgebraicGeometry.structureSheafInType.mul_apply, TopCat.Presheaf.germ_stalkSpecializes_apply, SSet.Subcomplex.topIso_inv_app_coe, SSet.prodStdSimplex.orderHomOfSimplex_coe, HomologicalComplex.extend_op_d_assoc, CategoryTheory.constantCommuteCompose_hom_app_val, CategoryTheory.Square.op_f₁₂, CategoryTheory.cokernelUnopUnop_inv, AlgebraicGeometry.StructureSheaf.exists_const, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, skyscraperPresheafCocone_pt, CategoryTheory.forgetEnrichmentOppositeEquivalence_functor, AlgebraicGeometry.Scheme.Modules.Hom.zero_app, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.Functor.PullbackObjObj.Ο€_iso_of_iso_left_inv, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as, CategoryTheory.isFilteredOrEmpty_op_of_isCofilteredOrEmpty, AlgebraicGeometry.AffineScheme.instIsEquivalenceOppositeCommRingCatOpRightOpΞ“, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, HomotopicalAlgebra.weakEquivalences_op, CategoryTheory.GrothendieckTopology.preservesLimitsOfShape_diagramFunctor, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply, CategoryTheory.Iso.op_inv, AlgebraicGeometry.Scheme.congr_app, CategoryTheory.unop_tensor_unop, SimplicialObject.opFunctor_obj_map, AlgebraicGeometry.Scheme.IdealSheafData.ideal_mul, CategoryTheory.kernelOpUnop_hom, CategoryTheory.Functor.IsCoverDense.isoOver_hom_app, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.structurePresheafInCommRing_obj_carrier, AlgebraicGeometry.Scheme.SpecΞ“Identity_hom_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_unitIso, CategoryTheory.Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomRight, AlgebraicGeometry.locallyQuasiFinite_iff, CategoryTheory.ShortComplex.Homotopy.op_hβ‚€, CategoryTheory.Coyoneda.objOpOp_inv_app, CategoryTheory.Functor.opComp_inv_app, smoothSheaf.ΞΉ_evalHom_apply, HomologicalComplex.isStrictlySupportedOutside_op_iff, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_Ο€_app_walkingParallelPair_one, SSet.Truncated.Edge.CompStruct.dβ‚‚, CategoryTheory.Limits.isColimitCoconeLeftOpOfCone_desc, SSet.opFunctorCompOpFunctorIso_hom_app_app, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.instIsClosedUnderLimitsOfShapeFunctorOppositeTypeIsIndObjectDiscreteOfHasLimitsOfShape, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Οƒ, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_inv_app', AlgebraicGeometry.StructureSheaf.toOpen_comp_comap, CategoryTheory.Equivalence.instPreservesFiniteLimitsFunctorOppositeSheafTransportAndSheafify, CategoryTheory.SimplicialObject.Augmented.wβ‚€, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, AlgebraicGeometry.AffineScheme.instIsEquivalenceOppositeCommRingCatRightOpΞ“, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, TopCat.Presheaf.pushforwardToOfIso_app, SSet.Subcomplex.toRange_app_val, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, AlgebraicGeometry.affineLocally_iff_forall_isAffineOpen, HomologicalComplex.unopInverse_map, CategoryTheory.Presheaf.freeYonedaHomEquiv_comp, PresheafOfModules.free_map_app, CategoryTheory.SimplicialObject.Οƒ_naturality, CategoryTheory.OverPresheafAux.yonedaCollectionPresheaf_map, CategoryTheory.ShortComplex.RightHomologyData.unop_i, AlgebraicGeometry.Scheme.Hom.formallyUnramified_appLE, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.Pretriangulated.shiftFunctorAdd'_op_hom_app, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.ofRestrict_invApp, CategoryTheory.uliftCoyonedaIsoCoyoneda_inv_app_app_down, CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, CategoryTheory.Limits.multicospanIndexEnd_snd, CategoryTheory.GrothendieckTopology.diagramCompIso_hom_ΞΉ, AlgebraicGeometry.Scheme.isoSpec_inv_preimage_zeroLocus, CategoryTheory.unop_tensorUnit, PresheafOfModules.congr_map_apply, CategoryTheory.ShortComplex.SnakeInput.op_Lβ‚‚, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.PresheafOfGroups.OneCocycle.ev_trans, CategoryTheory.Adjunction.compYonedaIso_hom_app_app, CategoryTheory.Functor.WellOrderInductionData.sectionsMk_val_op_bot, PresheafOfModules.freeYonedaEquiv_symm_app, CommRingCat.coyoneda_map_app, HomologicalComplex.unopEquivalence_functor, CategoryTheory.ShortComplex.HomologyMapData.unop_right, TopCat.toSheafCompHausLike_val_obj, CategoryTheory.Limits.hasCoequalizers_opposite, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app_assoc, TopCat.Presheaf.germ_res', AlgebraicGeometry.PresheafedSpace.Ξ“_obj_op, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, CategoryTheory.ShortComplex.unopFunctor_map, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_comp, PresheafOfModules.restrictScalarsObj_map, CategoryTheory.Over.opEquivOpUnder_unitIso, CategoryTheory.Limits.coconeOfConeLeftOp_pt, PresheafOfModules.forgetToPresheafModuleCatObj_map, CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom_assoc, Profinite.NobelingProof.spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, HomotopicalAlgebra.cofibration_op_iff, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, CategoryTheory.ShortComplex.Homotopy.op_hβ‚‚, TopCat.Sheaf.interUnionPullbackCone_fst, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeUnopOppositeOfIsClosedUnderLimitsOfShape, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, AlgebraicGeometry.functionField_isScalarTower, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, CategoryTheory.ShortComplex.SnakeInput.op_v₁₂, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, imageToKernel_op, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΞ“_app, TopCat.Presheaf.stalkPushforward_germ_apply, InfiniteGalois.toAlgEquivAux_eq_proj_of_mem, CategoryTheory.op_epi_iff, CategoryTheory.sheafCompose_map_val, CategoryTheory.Sheaf.comp_val, CategoryTheory.Pseudofunctor.DescentData.comp_hom, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_Ξ΅, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk, SSet.prodStdSimplex.objEquiv_apply_fst, CategoryTheory.Presieve.FamilyOfElements.compatible_singleton_iff, SheafOfModules.evaluationPreservesLimitsOfShape, LightCondensed.discrete_map, CategoryTheory.monoidalOpOp_Ξ΄, SimplicialObject.Splitting.cofan_inj_eq, CategoryTheory.Limits.instHasProductOppositeOp, CategoryTheory.MonObj.ofRepresentableBy_one, AlgebraicGeometry.Scheme.exists_germ_injective, SSet.Truncated.Path.map_arrow, CategoryTheory.Limits.hasColimit_of_hasLimit_leftOp, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_left, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr_assoc, CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_naturality_assoc, CategoryTheory.NatIso.op_trans, SSet.exists_nonDegenerate, CategoryTheory.Limits.PushoutCocone.op_snd, CategoryTheory.Limits.isColimitOfConeRightOpOfCocone_desc, AlgebraicGeometry.StructureSheaf.instIsLocalizedModuleObjOppositeOpensCarrierTopValStructureSheafInTypeOpBasicOpenPowersToOpenβ‚—, CategoryTheory.Limits.coend.condition, CategoryTheory.sheafToPresheaf_ΞΌ, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_app_eq, CategoryTheory.LocalizerMorphism.hasLeftResolutions_iff_op, LightProfinite.proj_comp_transitionMapLE', CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_and_equalizerCondition, TopCat.Presheaf.germ_res_apply, CategoryTheory.OverPresheafAux.OverArrows.val_mk, CategoryTheory.Limits.PullbackCone.unop_inl, CategoryTheory.NatTrans.rightOp_comp, CategoryTheory.ShortComplex.op_X₁, CategoryTheory.uliftCoyonedaEquiv_uliftCoyoneda_map, CochainComplex.homotopyUnop_hom_eq, CategoryTheory.Functor.RepresentableBy.coyoneda_homEquiv, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp, CategoryTheory.coyonedaEquiv_comp, CategoryTheory.uliftYonedaEquiv_symm_apply_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_homβ‚‚, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.Limits.inr_opProdIsoCoprod_inv_assoc, CategoryTheory.Limits.isLimitOfCoconeOfConeRightOp_lift, AlgebraicGeometry.Scheme.coprodPresheafObjIso_hom_snd_assoc, CategoryTheory.Limits.closedUnderLimitsOfShape_walkingParallelPair_isIndObject, AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο€_assoc, CategoryTheory.Join.opEquiv_functor_obj_op_right, CategoryTheory.Limits.colimitYonedaHomIsoLimit'_Ο€_apply, CategoryTheory.Limits.Ο€_comp_colimitLeftOpIsoUnopLimit_inv, AlgebraicGeometry.Proj.one_apply, AlgebraicGeometry.AffineScheme.mk_obj, HomologicalComplex.opcyclesOpIso_inv_naturality, AlgebraicGeometry.Scheme.Hom.toImage_app_injective, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, AlgebraicGeometry.Scheme.isoSpec_hom, CategoryTheory.Presheaf.isLocallyInjective_presheafToSheaf_map_iff, CategoryTheory.Groupoid.invFunctor_map, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality, AlgebraicGeometry.StructureSheaf.to_basicOpen_epi, CategoryTheory.Functor.IsRepresentedBy.of_natIso, AlgebraicGeometry.IsAffineOpen.opensRange_fromSpec, HomologicalComplex.extend.XOpIso_hom_d_op, CategoryTheory.Limits.parallelPairOpIso_inv_app_one, CategoryTheory.Functor.instFullOppositeTypeRestrictedULiftYonedaOfIsDense, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_Spec_fromSpecStalk, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_inv_app', CommMonCat.coyonedaType_obj_map, AlgebraicGeometry.Scheme.IdealSheafData.ideal_le_ker_glueDataObjΞΉ, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.isoRestrict_hom_c_app, TopCat.Presheaf.germ_stalkPullbackInv_assoc, LightProfinite.Extend.cocone_ΞΉ_app, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, AlgebraicGeometry.Scheme.eqToHom_c_app, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο€_assoc, AlgebraicGeometry.IsAffineOpen.self_le_iSup_basicOpen_iff, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, AlgebraicGeometry.Scheme.zeroLocus_biInf, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_map, AlgebraicGeometry.PresheafedSpace.stalkMap_germ_assoc, HomologicalComplex.opEquivalence_unitIso, CategoryTheory.toSheafify_sheafifyLift_assoc, AlgebraicGeometry.Proj.basicOpenToSpec_app_top, SimpleGraph.componentComplFunctor_obj, CategoryTheory.Limits.compYonedaSectionsEquiv_apply_app, CategoryTheory.cokernelOpOp_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.ofRestrict_invApp, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_naturality, CategoryTheory.ShortComplex.op_pOpcycles_opcyclesOpIso_hom, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_succ'_assoc, CategoryTheory.SimplicialObject.Ξ΄_def, Condensed.lanPresheafExt_inv, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections, CategoryTheory.NatIso.op_isoWhiskerLeft, CategoryTheory.ObjectProperty.unop_isoClosure, PresheafOfModules.pushforwardβ‚€_obj_obj_carrier, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app, CategoryTheory.Presieve.isSheafFor_iff_preservesProduct, CategoryTheory.Limits.Cofork.unop_op_Ο€, CategoryTheory.Functor.imageSieve_eq_imageSieve, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.liftHom_fac_assoc, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_obj_val_map, PresheafOfModules.id_app, CategoryTheory.Pretriangulated.commShiftIso_opOp_inv_app, CategoryTheory.ShortComplex.RightHomologyMapData.op_Ο†K, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.presheafHom_naturality, SSet.Truncated.StrictSegal.spineToSimplex_spine, CategoryTheory.ShortComplex.opMap_id, CategoryTheory.ShortComplex.LeftHomologyMapData.op_Ο†H, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_map, SimplexCategory.II_Οƒ, CategoryTheory.Limits.multicospanIndexEnd_right, CategoryTheory.Limits.PullbackCone.op_pt, AlgebraicGeometry.Scheme.toSpecΞ“_naturality_assoc, CategoryTheory.PresheafOfGroups.Cochainβ‚€.one_apply, CategoryTheory.PreOneHypercover.multicospanIndex_right, SSet.Subcomplex.degenerate_eq_top_iff, AlgebraicGeometry.Scheme.Modules.pushforwardComp_inv_app_app, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, CategoryTheory.Presheaf.isLocallySurjective_whisker, CategoryTheory.Presheaf.restrictedULiftYoneda_obj_map, CategoryTheory.leftDualFunctor_obj, CommRingCat.coyoneda_obj_obj_carrier, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_snd, CategoryTheory.LocalizerMorphism.RightResolution.op_X₁, AlgebraicGeometry.SurjectiveOnStalks.iff_of_isAffine, CategoryTheory.Functor.rightOpComp_hom_app, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetObj_obj, CategoryTheory.Functor.rightAdjointObjIsDefined_iff, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.map_on_summand_assoc, CategoryTheory.MorphismProperty.instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions, AlgebraicGeometry.SpecMap_Ξ“SpecIso_hom, HomologicalComplex.extend.XOpIso_hom_d_op_assoc, CategoryTheory.ObjectProperty.isCoseparating_op_iff, CategoryTheory.Comma.opFunctor_map, CategoryTheory.image_ΞΉ_op_comp_imageUnopOp_hom, CategoryTheory.Presheaf.comp_isLocallySurjective_iff, CategoryTheory.OverPresheafAux.unitAuxAuxAux_hom, AlgebraicGeometry.IsAffineOpen.isLocalization_basicOpen, CategoryTheory.Functor.leftOp_obj, CategoryTheory.Limits.coneUnopOfCocone_pt, CategoryTheory.Equivalence.inverseFunctor_obj, AlgebraicTopology.DoldKan.PInfty_f_naturality_assoc, CategoryTheory.Functor.IsCoverDense.Types.appHom_valid_glue, CategoryTheory.Limits.Cofork.unop_Ο€_app_one, AlgebraicGeometry.Scheme.zeroLocus_iUnion, SSet.iSup_skeleton, SSet.OneTruncationβ‚‚.ofNerveβ‚‚.natIso_inv_app_obj_obj, PresheafOfModules.toPresheaf_map_toSheafify, CategoryTheory.Functor.rightOpLeftOpIso_hom_app, CategoryTheory.Limits.hasCoproducts_opposite, PresheafOfModules.restrictScalarsObj_obj, AlgebraicGeometry.IsReduced.component_reduced, CategoryTheory.Equalizer.firstObjEqFamily_hom, CategoryTheory.Adjunction.Triple.op_adj₁, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range', CategoryTheory.Iso.op_symm, CategoryTheory.Limits.isLimitOfCoconeOfConeLeftOp_lift, CategoryTheory.Iso.unop_refl, AlgebraicGeometry.SheafedSpace.comp_hom_c_app, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.Limits.inl_opProdIsoCoprod_inv_assoc, CategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_op_iff_unop, SSet.nonDegenerateEquivOfIso_symm_apply_coe, LightCondSet.topCatAdjunctionUnit_val_app_apply, CommRingCat.coyoneda_obj_map, CategoryTheory.yonedaFunctor_reflectsLimits, CategoryTheory.Limits.piConst_map_app, AlgebraicGeometry.IsIntegralHom.isIntegral_app, AlgebraicGeometry.Scheme.ker_ideal_of_isPullback_of_isOpenImmersion, CategoryTheory.isIso_toSheafify, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, CategoryTheory.Functor.instFinalOppositeRightOpOfInitial, CategoryTheory.Under.mapFunctor_obj, CategoryTheory.Presieve.isSheafFor_singleton, PresheafOfModules.Derivation.postcomp_d_apply, TopCat.Sheaf.id_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality_assoc, SimplicialObject.opFunctor_map_app, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_map_f, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushout, AlgebraicGeometry.LocallyRingedSpace.Ξ“_obj_op, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_appTop_coord, SSet.Truncated.HomotopyCategoryβ‚‚.mk_surjective, PresheafOfModules.Derivation.d_one, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₃, SSet.spine_vertex, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_homβ‚‚, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.isIso_of_subset, PresheafOfModules.sectionsMap_coe, SimpleGraph.infinite_iff_in_eventualRange, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄_assoc, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.ofRestrict_invApp_apply, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_inv_app_assoc, CategoryTheory.Presieve.FamilyOfElements.singletonEquiv_symm_apply_self, HomologicalComplex.opFunctor_obj, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over_assoc, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToΞ“_Ξ“ToStalk, CategoryTheory.Functor.FullyFaithful.homNatIso_inv_app_down, CategoryTheory.Cat.opEquivalence_counitIso, AlgebraicTopology.DoldKan.comp_P_eq_self_iff, CategoryTheory.IsCofiltered.iff_nonempty_limit, CategoryTheory.ShortComplex.HomologyData.op_right, AlgebraicGeometry.StructureSheaf.comap_const, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_fst, AlgebraicGeometry.Scheme.Hom.appLE_map', CategoryTheory.sheafificationIso_inv_val, SSet.Subcomplex.preimage_min, SSet.Subcomplex.eq_top_iff_of_hasDimensionLT, CategoryTheory.instIsSplitMonoOppositeOpOfIsSplitEpi, AlgebraicGeometry.Scheme.isoSpec_hom_naturality, CategoryTheory.LocalizerMorphism.LeftResolution.unop_X₁, topCatOpToFrm_map, AlgebraicGeometry.Scheme.zeroLocus_singleton, SSet.stdSimplex.ext_iff, HomologicalComplex.instQuasiIsoAtMapOppositeSymmUnopFunctorOp, SSet.Ξ΄_naturality_apply, CategoryTheory.MorphismProperty.LeftFraction.unop_X', AlgebraicGeometry.PresheafedSpace.comp_c_app, CategoryTheory.MorphismProperty.op_isomorphisms, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality', CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, PresheafOfModules.map_comp_apply, AlgebraicGeometry.Scheme.toSpecΞ“_isoSpec_inv_assoc, AlgebraicGeometry.LocallyRingedSpace.component_nontrivial, CategoryTheory.uliftCoyonedaEquiv_symm_apply_app, CategoryTheory.ShortComplex.leftHomologyMap_op, AlgebraicGeometry.Scheme.IdealSheafData.ideal_map, CategoryTheory.Functor.representableByUliftFunctorEquiv_symm_apply_homEquiv, CategoryTheory.Functor.opId_hom_app, CategoryTheory.LocalizerMorphism.RightResolution.unop_X₁, PresheafOfModules.pushforward_map_app_apply', AlgebraicGeometry.Proj.sub_apply, AlgebraicGeometry.isLocallyArtinian_iff_of_isOpenCover, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj, CategoryTheory.Coyoneda.ULiftCoyoneda.instFullOppositeFunctorTypeUliftCoyoneda, CategoryTheory.instEssentiallySmallOpposite, CategoryTheory.Functor.shift_map_op_assoc, PresheafOfModules.instFaithfulFunctorOppositeAbToPresheaf, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_jointly_surjective, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_Ο€_app, CategoryTheory.Functor.leftOp_faithful, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_unitIso, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp_assoc, CategoryTheory.SimplicialObject.Truncated.trunc_obj_obj, SSet.mem_degenerate_iff_notMem_nonDegenerate, CategoryTheory.GrothendieckTopology.diagramCompIso_hom_ΞΉ_assoc, AlgebraicGeometry.Scheme.Hom.comp_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_def, CategoryTheory.LocalizerMorphism.instHasLeftResolutionsOppositeOpOpOfHasRightResolutions, SSet.opFunctor_map, CategoryTheory.Adjunction.Quadruple.op_rightTriple, CategoryTheory.ShortComplex.homologyOpIso_inv_naturality, CategoryTheory.countableCategoryOpposite, PresheafOfModules.Derivation.d_mul, AddCommMonCat.coyonedaType_obj_map, AlgebraicGeometry.instIsScalarTowerObjOppositeOpensCarrierTopValStructureSheafInType, CategoryTheory.MorphismProperty.RespectsIso.op, CategoryTheory.OverPresheafAux.counitForward_naturality₁, HomologicalComplex.cyclesOpIso_inv_naturality_assoc, CategoryTheory.linearYoneda_obj_obj_carrier, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_hom_app, CategoryTheory.op_tensorUnit, CategoryTheory.Pretriangulated.commShiftIso_opOp_hom_app_assoc, CategoryTheory.ObjectProperty.limitsOfShape_op, CategoryTheory.Functor.instEssSurjOppositeOp, SSet.Subcomplex.topIso_inv_ΞΉ, AlgebraicGeometry.Scheme.toSpecΞ“_naturality, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, SSet.prodStdSimplex.strictMono_orderHomOfSimplex_iff, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, lightDiagramToLightProfinite_obj, CategoryTheory.Coyoneda.objOpOp_hom_app, HomologicalComplex.Acyclic.op, CategoryTheory.ShortComplex.Homotopy.unop_h₃, CategoryTheory.Functor.unopId_inv_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map, CategoryTheory.Limits.Ο€_comp_colimitUnopIsoOpLimit_inv, SSet.Subcomplex.ofSimplexProd_eq_range, smoothSheaf.ΞΉ_evalHom_assoc, CategoryTheory.ShortComplex.exact_op_iff, CategoryTheory.MorphismProperty.RightFraction.unop_s, CategoryTheory.sheafComposeIso_hom_fac, CategoryTheory.Comon.Comon_EquivMon_OpOp_functor, SSet.Truncated.Edge.CompStruct.tensor_simplex_snd, CategoryTheory.Limits.Cone.extend_Ο€, CategoryTheory.Limits.fst_opProdIsoCoprod_hom_assoc, CategoryTheory.CategoryOfElements.instHasInitialElementsOppositeOfIsRepresentable, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, Profinite.isIso_indexCone_lift, CategoryTheory.Limits.coneOfCoconeRightOp_Ο€, CategoryTheory.extensiveTopology.isSheaf_yoneda_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Pretriangulated.shiftFunctorAdd'_op_inv_app, AlgebraicGeometry.Scheme.Hom.ΞΉ_toNormalization, CompHausLike.LocallyConstant.counitApp_app, CategoryTheory.Equalizer.Sieve.w, CategoryTheory.Functor.const.opObjUnop_hom_app, AlgebraicGeometry.LocallyRingedSpace.Ξ“_Spec_left_triangle, CategoryTheory.Functor.IsCoverDense.sheafHom_eq, CategoryTheory.op_tensorObj, AlgebraicGeometry.StructureSheaf.comap_apply, CommMonCat.coyoneda_obj_map, SSet.PtSimplex.RelStruct.Ξ΄_castSucc_map, CategoryTheory.eHomFunctor_obj_obj, Condensed.isoFinYonedaComponents_hom_apply, AlgebraicGeometry.Scheme.Hom.smooth_appLE, SSet.stdSimplex.objβ‚€Equiv_apply, SSet.horn₃₁.desc.multicofork_pt, AlgebraicTopology.AlternatingFaceMapComplex.map_f, CategoryTheory.Pretriangulated.instIsTriangulatedOppositeOpOp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, AlgebraicGeometry.Scheme.IdealSheafData.ideal_pow, CategoryTheory.ShortComplex.cyclesOpIso_hom_naturality, AlgebraicGeometry.RingedSpace.mem_top_basicOpen, AlgebraicGeometry.Spec.faithful, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, AlgebraicGeometry.Scheme.Opens.germ_stalkIso_inv, CategoryTheory.Iso.op_hom, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_mapPreimage_condition, CategoryTheory.isSeparating_op_iff, CategoryTheory.StructuredArrow.functor_map, CategoryTheory.Functor.RepresentableBy.comp_homEquiv_symm, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₁, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_obj_val_obj, CategoryTheory.Limits.preservesColimit_rightOp, CategoryTheory.Functor.sheafPushforwardContinuousNatTrans_app_val, CompHausLike.LocallyConstantModule.functor_map_val, CategoryTheory.Functor.PullbackObjObj.Ο€_iso_of_iso_right_hom, CompHausLike.LocallyConstant.functor_map_val, SSet.skeleton_le_skeletonOfMono, CategoryTheory.Limits.PullbackCone.unop_inr, CategoryTheory.Sheaf.instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, SSet.prodStdSimplex.objEquiv_Ξ΄_apply, CategoryTheory.Enriched.FunctorCategory.enrichedId_Ο€_assoc, Subobject.presheaf_obj, CategoryTheory.Functor.opUnopEquiv_counitIso, CategoryTheory.Adjunction.Quadruple.op_leftTriple, AddCommMonCat.coyonedaType_map_app, CategoryTheory.NatTrans.op_id, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl, CategoryTheory.Limits.preservesColimitsOfShape_of_leftOp, SheafOfModules.evaluationPreservesLimitsOfSize, CategoryTheory.GrothendieckTopology.Point.instPreservesColimitsOfSizeFunctorOppositePresheafFiber, CategoryTheory.Comon.MonOpOpToComon_map_hom, CategoryTheory.Functor.instFaithfulOppositeOp, Condensed.instPreservesFiniteProductsOppositeCompHausVal, CategoryTheory.Limits.spanOp_hom_app, AlgebraicGeometry.IsAffineOpen.ideal_le_iff, CategoryTheory.Limits.coconeOfConeUnop_pt, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, AlgebraicGeometry.Scheme.comp_appLE, CategoryTheory.faithful_linearYoneda, TopCat.Presheaf.IsSheaf.isSheafUniqueGluing_types, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceΞ΄_singleTriangle_apply, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο€_assoc, CategoryTheory.Join.opEquiv_inverse_map_inclRight_op, Profinite.Extend.functorOp_obj, AlgebraicGeometry.Scheme.Hom.congr_app, CategoryTheory.HasClassifier.reflectsIsomorphismsOp, AlgebraicGeometry.instFullOppositeCommRingCatLocallyRingedSpaceToLocallyRingedSpace, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp_assoc, CategoryTheory.Limits.preservesColimitsOfSize_of_rightOp, CategoryTheory.Limits.hasLimitsOfShape_op_of_hasColimitsOfShape, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CategoryTheory.Over.opEquivOpUnder_inverse_obj, CategoryTheory.Limits.limitCompCoyonedaIsoCone_hom_app, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm, CategoryTheory.Limits.widePullbackShapeOpEquiv_inverse, SSet.op_Οƒ, CategoryTheory.uliftYonedaEquiv_apply, CategoryTheory.Limits.ΞΉ_comp_colimitRightOpIsoUnopLimit_hom_assoc, CategoryTheory.Functor.sheafPushforwardContinuous_map_val_app, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_naturality_assoc, AlgebraicGeometry.Scheme.ofRestrict_appLE, AlgebraicGeometry.Scheme.Hom.QuasiFiniteAt.quasiFiniteAt, CategoryTheory.SimplicialObject.hom_ext_iff, CategoryTheory.Limits.FormalCoproduct.powerBifunctor_map_app, CategoryTheory.Limits.preservesLimitsOfSize_op, AlgebraicGeometry.IsAffineOpen.isoSpec_inv, CategoryTheory.HasSheafify.isLeftExact, AlgebraicGeometry.Scheme.Hom.id_app, TopCat.Presheaf.comp_app, CategoryTheory.LocalizerMorphism.nonempty_rightResolution_iff_op, CategoryTheory.ShortComplex.hasLeftHomology_iff_unop, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.Presheaf.isSheaf_yoneda', AlgebraicGeometry.Scheme.Ξ“_obj, PresheafOfModules.unit_map_one, CategoryTheory.ShortComplex.exact_unop_iff, CategoryTheory.Functor.instInitialOppositeLeftOpOfFinal, SSet.Subcomplex.toSSetFunctor_obj, PresheafOfModules.zsmul_app, AlgebraicGeometry.isLocallyNoetherian_iff_of_affine_openCover, AlgebraicGeometry.Scheme.kerAdjunction_unit_app, Condensed.finYoneda_map, AlgebraicTopology.alternatingFaceMapComplex_map_f, CategoryTheory.Classifier.SubobjectRepresentableBy.homEquiv_eq, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_Ξ΄, SSet.hasDimensionLT_subcomplex_top_iff, PresheafOfModules.toPresheaf_obj_coe, SSet.Truncated.Edge.id_tensor_id, CategoryTheory.op_whiskerLeft, SSet.Subcomplex.instSubsingletonHomToSSetBot, CategoryTheory.ShortComplex.LeftHomologyData.op_H, CategoryTheory.Functor.mapCoconeOp_inv_hom, AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff_of_mem, HomotopicalAlgebra.instHasFactorizationOppositeCofibrationsTrivialFibrationsOfTrivialCofibrationsFibrations, CategoryTheory.MorphismProperty.IsStableUnderComposition.op, CategoryTheory.IsCommMonObj.ofRepresentableBy, topCatToSheafCompHausLike_map_val_app, TopCat.Presheaf.germ_stalkSpecializes_assoc, CategoryTheory.Limits.Cocone.op_pt, CategoryTheory.Presieve.FamilyOfElements.singletonEquiv_apply, CategoryTheory.prodOpEquiv_unitIso_hom_app, CategoryTheory.NatTrans.op_whiskerRight_assoc, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.Injective.injective_iff_projective_op, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, LightProfinite.lightToProfinite_map_proj_eq, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality', CategoryTheory.preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.isFinitelyPresentable_iff_preservesFilteredColimitsOfSize, AlgebraicGeometry.IsLocallyArtinian.isArtinianRing_of_isAffine, CategoryTheory.linearCoyoneda_obj_obj_isAddCommGroup, CategoryTheory.Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, AlgebraicGeometry.StructureSheaf.toPushforwardStalkAlgHom_apply, AlgebraicGeometry.Scheme.Hom.germ_stalkMap_apply, CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions, CompHausLike.LocallyConstant.incl_of_counitAppApp, CategoryTheory.Functor.leftOpId_hom_app, AlgebraicGeometry.Scheme.preimage_basicOpen_top, CategoryTheory.Subfunctor.isGeneratedBy_iff, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_naturality_apply, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv, AlgebraicGeometry.Scheme.Hom.app_appIso_inv_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, CategoryTheory.Limits.preservesColimit_leftOp, CompHausLike.sigmaComparison_eq_comp_isos, CategoryTheory.Limits.preservesLimitsOfShape_of_rightOp, CategoryTheory.Adjunction.compPreadditiveYonedaIso_inv_app_app_apply, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.liftHom_fac, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, CategoryTheory.Subfunctor.Subpresheaf.isGeneratedBy_iff, AlgebraicGeometry.IsAffineOpen.basicOpen_fromSpec_app, PresheafOfModules.isoMk_hom_app, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_assoc, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, TopCat.Presheaf.stalkPushforward_germ_assoc, SSet.prodStdSimplex.objEquiv_naturality, CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsOppositeOp, CategoryTheory.BraidedCategory.unop_tensorΞΌ, CategoryTheory.Sheaf.tensorProd_isSheaf, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, TopCat.Presheaf.pushforward_map_app, AlgebraicGeometry.Scheme.Hom.coequifibered_normalizationDiagramMap, AlgebraicGeometry.Ξ“Spec.adjunction_counit_app', TopologicalSpace.OpenNhds.op_map_id_obj, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_restriction_assoc, CategoryTheory.PreOneHypercover.multifork_ΞΉ, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AlgebraicGeometry.Scheme.isoSpec_hom_naturality_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, CategoryTheory.ParametrizedAdjunction.hasLiftingProperty_iff, AlgebraicGeometry.Scheme.isoSpec_inv_image_zeroLocus, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, AlgebraicGeometry.Scheme.IdealSheafData.range_glueDataObjΞΉ_ΞΉ, CommGrpCat.coyonedaType_map_app, CategoryTheory.instIsIsoFunctorOppositeSheafSheafComposeNatTrans, AlgebraicGeometry.Scheme.germToFunctionField_injective, CategoryTheory.NatTrans.removeLeftOp_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, CategoryTheory.Subfunctor.IsGeneratedBy.ofSection_le, CategoryTheory.op_tensor_op, CategoryTheory.CommSq.HasLift.iff_op, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left, CategoryTheory.uliftYonedaEquiv_symm_map, CategoryTheory.GrothendieckTopology.W.transport_isMonoidal, AlgebraicGeometry.Scheme.Modules.germ_restrictStalkNatIso_hom_app, HomologicalComplex.cyclesOpNatIso_inv_app, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.iso_hom, CategoryTheory.Functor.cones_obj, CategoryTheory.preadditiveYonedaMap_app, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app', CategoryTheory.homOfLE_op_comp_eqToHom_assoc, SSet.stdSimplex.spineId_arrow_apply_zero, CategoryTheory.Square.unop_f₁₂, CategoryTheory.shrinkYoneda_obj, CategoryTheory.Iso.unop_trans, SSet.comp_app_assoc, CondensedMod.isDiscrete_iff_isDiscrete_forget, AddCommGrpCat.coyonedaForget_inv_app_app, SSet.nonDegenerate_eq_bot_of_hasDimensionLT, CategoryTheory.instPreservesFiniteColimitsSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreadditiveOfHasFiniteColimits, HomotopicalAlgebra.weakEquivalences_op_iff, PresheafOfModules.map_smul, CategoryTheory.Pseudofunctor.DescentData.iso_inv, CategoryTheory.Abelian.subobjectIsoSubobjectOp_apply, AlgebraicGeometry.isIso_morphismRestrict_iff_isIso_app, CategoryTheory.Sheaf.imageΞΉ_val, CategoryTheory.Limits.preservesLimit_leftOp, CategoryTheory.kernelUnopUnop_inv, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο€, CategoryTheory.NatTrans.leftOp_id, CategoryTheory.Enriched.FunctorCategory.diagram_map_app, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen_topIso_inv, PresheafOfModules.Monoidal.tensorObj_map_tmul, AlgebraicGeometry.Scheme.zeroLocus_setMul, AlgebraicGeometry.SpecMap_Ξ“SpecIso_inv_toSpecΞ“, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.Adjunction.compUliftCoyonedaIso_inv_app_app_down, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, CategoryTheory.presheafHom_obj, Alexandrov.principals_map, CategoryTheory.MorphismProperty.instHasFactorizationOppositeOp, AlgebraicTopology.DoldKan.MorphComponents.preComp_b, CategoryTheory.ObjectProperty.InheritedFromTarget.op, AlgebraicGeometry.Scheme.toSpecΞ“_preimage_zeroLocus, CategoryTheory.Limits.PullbackCone.op_inr, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_Ο€_app, AlgebraicTopology.DoldKan.Ξ“β‚‚_obj_p_app, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_open, CategoryTheory.NatIso.unop_trans, CategoryTheory.Functor.whiskerLeft_obj_map_bijective_of_isCoverDense, CategoryTheory.RelCat.instIsEquivalenceOppositeUnopFunctor, CategoryTheory.Limits.parallelPairOpIso_hom_app_one, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_inv_app, CategoryTheory.Functor.IsCoverDense.sheafHom_restrict_eq, TopCat.Presheaf.stalk_open_algebraMap, CategoryTheory.ShortComplex.opMap_τ₃, CategoryTheory.PreOneHypercover.multicospanIndex_snd, CategoryTheory.IsCommMon.ofRepresentableBy, AlgebraicGeometry.Scheme.Hom.app_surjective, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Limits.PullbackCone.op_ΞΉ_app, CategoryTheory.ShortComplex.opcyclesOpIso_hom_naturality_assoc, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, SSet.Truncated.spine_map_subinterval, TopCat.Presheaf.presheafEquivOfIso_inverse_obj_map, TopCat.Presheaf.pushforwardEq_hom_app, CategoryTheory.typeEquiv_inverse_obj, SSet.Subcomplex.eq_top_iff_contains_nonDegenerate, SSet.PtSimplex.RelStruct.Ξ΄_castSucc_map_assoc, CategoryTheory.Equivalence.symmEquivInverse_obj_counitIso_hom, AlgebraicGeometry.affineLocally_iff_affineOpens_le, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Ξ΄_eq_zero_assoc, AlgebraicGeometry.Scheme.fromSpecStalk_appTop, AlgebraicTopology.AlternatingFaceMapComplex.d_squared, CategoryTheory.Square.op_fβ‚‚β‚„, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CategoryTheory.essImage_yonedaMon, AlgebraicGeometry.RingedSpace.basicOpen_pow, CategoryTheory.Presheaf.isLocallySurjective_comp_iff, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_naturality_assoc, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, CategoryTheory.Limits.opCoproductIsoProduct_hom_comp_Ο€, SSet.PtSimplex.MulStruct.Ξ΄_succ_succ_map_assoc, CategoryTheory.Equivalence.inverseFunctor_map, TopCat.presheafToTop_obj, CategoryTheory.Limits.preservesFiniteColimits_rightOp, AlgebraicGeometry.HasRingHomProperty.iff_of_iSup_eq_top, CategoryTheory.ShortComplex.unop_f, CategoryTheory.Adjunction.Triple.op_rightToLeft, AlgebraicGeometry.Scheme.Opens.toScheme_presheaf_obj, PresheafOfModules.instPreservesLimitsOfSizeModuleCatCarrierObjOppositeRingCatEvaluation, CategoryTheory.GrothendieckTopology.W_iff_isIso_map_of_adjunction, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_ideal, AlgebraicGeometry.PresheafedSpace.Ξ“_map_op, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.Equivalence.sheafCongrPreregular_functor_obj_val_obj, AddCommGrpCat.coyonedaForget_hom_app_app_hom, CategoryTheory.Limits.preservesLimit_of_unop, CategoryTheory.GrothendieckTopology.W_isInvertedBy_whiskeringRight_presheafToSheaf, HomotopicalAlgebra.cofibrations_op, CategoryTheory.OverPresheafAux.YonedaCollection.mapβ‚‚_snd, CategoryTheory.Limits.hasLimit_of_hasColimit_rightOp, CategoryTheory.Functor.isDense_iff_fullyFaithful_restrictedULiftYoneda, CategoryTheory.Sheaf.Ξ“HomEquiv_naturality_left, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.kernelOpUnop_inv, CategoryTheory.Limits.Fork.unop_ΞΉ_app_one, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο€_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_apply, AlgebraicGeometry.Scheme.id_appTop, CategoryTheory.Arrow.cechNerve_obj, CategoryTheory.yonedaMon_naturality_assoc, SSet.instFiniteElemObjOppositeSimplexCategoryOpMkNonDegenerateOfFinite, CategoryTheory.coyoneda_preservesLimits, CategoryTheory.Comon.ComonToMonOpOp_map, SheafOfModules.pushforwardComp_inv_app_val_app, AlgebraicGeometry.AffineScheme.Ξ“_preservesLimits, CategoryTheory.Presheaf.isSheaf_coherent_of_projective_comp, AlgebraicGeometry.Scheme.Spec_map_presheaf_map_eqToHom, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_appTop_assoc, SSet.id_app, CategoryTheory.yonedaMonObj_map, CategoryTheory.ShortComplex.homologyMap'_op, SSet.spine_arrow, CategoryTheory.instRepresentablyFlatOppositeOpOfRepresentablyCoflat, CategoryTheory.Cat.opFunctor_obj, CategoryTheory.Equivalence.sheafCongrPreregular_functor_map_val_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, CategoryTheory.Subfunctor.ofSection_obj, CategoryTheory.uliftYonedaEquiv_naturality, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_self'_assoc, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, CategoryTheory.Subpresheaf.isSeparated, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_left, CategoryTheory.Limits.Fork.unop_op_ΞΉ, CategoryTheory.Limits.FormalCoproduct.powerBifunctor_obj, TopCat.Sheaf.extend_hom_app, CategoryTheory.ObjectProperty.isSeparating_unop_iff, CategoryTheory.OverPresheafAux.YonedaCollection.yonedaEquivFst_eq, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.op_inv_braiding, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_hom_app_hom₁, CategoryTheory.id_app, CategoryTheory.Limits.opParallelPairIso_hom_app_zero, AlgebraicGeometry.IsAffineOpen.primeIdealOf_isMaximal_of_isClosed, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_obj, AlgebraicGeometry.Scheme.fromSpecStalk_toSpecΞ“, AlgebraicGeometry.Scheme.ker_toSpecΞ“, TopCat.Presheaf.map_germ_eq_Ξ“germ, CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafReflectorSheafToPresheaf, AlgebraicGeometry.Scheme.IdealSheafData.ideal_bot, CategoryTheory.Functor.coreprW_hom_app, AlgebraicGeometry.Spec.toLocallyRingedSpace_obj, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso, CategoryTheory.ShortComplex.unopFunctor_obj, PresheafOfModules.pushforwardβ‚€_obj_obj_isAddCommGroup, PartialOrder.mem_nerve_degenerate_of_eq, SSet.Augmented.stdSimplex_map_right, SSet.Subcomplex.preimage_range, SSet.Subcomplex.toImage_app_coe, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_obj, AlgebraicGeometry.Scheme.ker_of_isAffine, CategoryTheory.Limits.Cowedge.condition_assoc, CategoryTheory.sheafification_map, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.GrothendieckTopology.PreservesSheafification.le, SSet.PtSimplex.MulStruct.Ξ΄_succ_succ_map, AlgebraicGeometry.IsAffineOpen.algebraMap_Spec_obj, AlgebraicGeometry.isBasis_basicOpen, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.Coyoneda.colimitCocone_ΞΉ_app, CategoryTheory.Pretriangulated.instIsHomologicalOppositeAddCommGrpCatObjFunctorPreadditiveYoneda, CategoryTheory.Limits.piConst_obj_map, CommMonCat.coyonedaForget_inv_app_app, Condensed.instPreservesLimitsOfShapeOppositeProfiniteDiscreteCarrierToTopTotallyDisconnectedSpaceOfFinite, PartialOrder.mem_nerve_nonDegenerate_iff_injective, CategoryTheory.ShortComplex.unopMap_τ₁, CategoryTheory.Equalizer.Presieve.Arrows.compatible_iff, SSet.prodStdSimplex.objEquiv_apply_snd, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_inv_app_hom₃, AlgebraicGeometry.Scheme.Ξ“evaluation_naturality_apply, CategoryTheory.Adjunction.Triple.op_adjβ‚‚, CategoryTheory.NatTrans.removeUnop_app, AlgebraicGeometry.locallyOfFiniteType_iff, AlgebraicGeometry.SheafedSpace.comp_c_app, CategoryTheory.ShortComplex.LeftHomologyMapData.op_Ο†Q, CategoryTheory.NatTrans.removeOp_id, AlgebraicGeometry.Flat.flat_and_surjective_iff_faithfullyFlat_of_isAffine, PresheafOfModules.mono_iff_surjective, CategoryTheory.Square.op_X₃, HomotopicalAlgebra.instHasFactorizationOppositeTrivialCofibrationsFibrationsOfCofibrationsTrivialFibrations, TopCat.Presheaf.SheafConditionEqualizerProducts.w, CategoryTheory.Limits.coend.map_comp_assoc, CategoryTheory.Localization.isoOfHom_op_inv, CategoryTheory.ShortComplex.op_pOpcycles_opcyclesOpIso_hom_assoc, CategoryTheory.sheafifyMap_id, AlgebraicTopology.DoldKan.Ξ“β‚€_obj_map, CategoryTheory.instFaithfulMonFunctorOppositeMonCatYonedaMon, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_obj, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, PresheafOfModules.freeObj_map, CategoryTheory.isCoseparating_op_iff, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_top_assoc, SSet.S.mk_map_eq_iff_of_mono, SSet.Subcomplex.image_le_iff, AlgebraicGeometry.liftCoborder_app, AlgebraicGeometry.LocallyRingedSpace.coe_toΞ“SpecSheafedSpace_hom_base_hom_apply_asIdeal, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, CategoryTheory.Limits.pullbackIsoOpPushout_inv_fst_assoc, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_preimage_basicOpen, TopCat.Presheaf.isSheaf_iff_isSheaf_comp, CategoryTheory.Functor.sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, CategoryTheory.yonedaMon_naturality, CategoryTheory.MorphismProperty.MapFactorizationData.op_Z, SSet.hom_ext_iff, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_left, CategoryTheory.Limits.colimitYonedaHomIsoLimit_Ο€_apply, CategoryTheory.NatTrans.rightOpWhiskerRight, AlgebraicGeometry.isIntegral_appTop_of_universallyClosed, CategoryTheory.equivYoneda'_inv_val, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.ofRestrict_invApp_apply, CategoryTheory.Presheaf.isLocallyInjective_whisker, AlgebraicGeometry.SheafedSpace.id_hom_c_app, CategoryTheory.cokernelUnopOp_hom, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_map_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_obj_val_map, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_w, AlgebraicGeometry.Scheme.zeroLocus_def, CategoryTheory.Subfunctor.Subpresheaf.mem_ofSection_obj, CategoryTheory.WithInitial.opEquiv_inverse_obj, HomologicalComplex.instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_continuous, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_inv_app, AlgebraicGeometry.Spec_map_localization_isIso, CategoryTheory.unop_whiskerRight, AlgebraicGeometry.IsOpenImmersion.map_Ξ“Iso_inv_assoc, CategoryTheory.Pseudofunctor.DescentData.instIsIsoΞ±CategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.GrothendieckTopology.W_adj_unit_app, CategoryTheory.Limits.preservesLimitsOfSize_leftOp, CategoryTheory.Limits.coneOfCoconeLeftOp_Ο€_app, CategoryTheory.ObjectProperty.instSmallOppositeOp, CommAlgCat.lift_unop_hom, AlgebraicGeometry.Ξ“Spec.adjunction_counit_app, SSet.S.le_iff, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, CategoryTheory.Limits.coneOfCoconeUnop_Ο€, CategoryTheory.Equivalence.rightOp_inverse_map, AlgebraicGeometry.StructureSheaf.algebraMap_self_map, CategoryTheory.sheafToPresheaf_obj, AlgebraicGeometry.tilde.isoTop_hom, CategoryTheory.OverPresheafAux.unitAuxAuxAux_inv, CategoryTheory.ShortComplex.RightHomologyMapData.unop_Ο†K, AlgebraicGeometry.Scheme.restrict_presheaf_obj, CategoryTheory.additive_yonedaObj', SSet.hasDimensionLT_iff, CategoryTheory.Limits.isColimitOfConeOfCoconeLeftOp_desc, CategoryTheory.nerveMap_app_mk₁, CategoryTheory.OverPresheafAux.yonedaCollectionPresheafToA_app, CategoryTheory.Limits.SequentialProduct.functorMap_commSq_aux, CategoryTheory.sheafToPresheaf_map, CategoryTheory.Presheaf.isSheaf_comp_of_isSheaf, CategoryTheory.Functor.leftOpRightOpIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, ModuleCat.Tilde.toOpen_res, CategoryTheory.OverPresheafAux.counitForward_val_snd, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one_assoc, CategoryTheory.op_leftUnitor, AlgebraicGeometry.germ_comp_stalkToFiberRingHom, CategoryTheory.Over.opEquivOpUnder_inverse_map, AlgebraicGeometry.Scheme.IdealSheafData.mem_supportSet_iff, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_coyoneda_obj, CategoryTheory.Limits.SequentialProduct.cone_Ο€_app_comp_Pi_Ο€_neg_assoc, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_appTop, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, AlgebraicGeometry.Scheme.Ξ“_def, CommAlgCat.mul_op_of_unop_hom, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₃, CategoryTheory.presheafHom_map_app, AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff, CondensedMod.epi_iff_surjective_on_stonean, CategoryTheory.Limits.opParallelPairIso_hom_app_one, CategoryTheory.typeEquiv_unitIso_hom_app, AlgebraicGeometry.PresheafedSpace.GlueData.ΞΉ_image_preimage_eq, AlgebraicGeometry.Spec.full, CategoryTheory.Equivalence.symmEquivFunctor_map, SSet.instFiniteObjOppositeSimplexCategoryTensorObj, CompHausLike.LocallyConstant.functor_obj_val, CategoryTheory.Functor.rightOpId_inv_app, CategoryTheory.Limits.isLimitConeOfCoconeUnop_lift, CategoryTheory.faithful_preadditiveCoyoneda, CategoryTheory.Equivalence.sheafCongrPreregular_functor_obj_val_map, InfiniteGalois.mulEquivToLimit_symm_continuous, SSet.horn₃₁.desc.multicofork_Ο€_two_assoc, CategoryTheory.Ind.isIndObject_inclusion_obj, CategoryTheory.Limits.isColimitOfConeUnopOfCocone_desc, CategoryTheory.Limits.yonedaCompLimIsoCocones_hom_app_app, PresheafOfModules.instEpiModuleCatCarrierObjOppositeRingCatApp, AlgebraicGeometry.LocallyOfFiniteType.finiteType_appLE, CategoryTheory.Limits.coend.condition_assoc, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec_assoc, AlgebraicGeometry.Spec.map_appLE, CategoryTheory.Limits.instHasColimitDiscreteOppositeCompInverseOppositeOpFunctor, CategoryTheory.Functor.rightOp_obj, CategoryTheory.Limits.preservesLimitsOfShape_op, AlgebraicGeometry.Scheme.Hom.finitePresentation_appLE, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₁, smoothSheafCommRing.ΞΉ_evalHom, AlgebraicGeometry.Ξ“_restrict_isLocalization, CategoryTheory.Subfunctor.ofSection_eq_range', CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, AlgebraicGeometry.Scheme.Hom.appIso_inv_app_presheafMap, CategoryTheory.faithful_preadditiveYoneda, CategoryTheory.Yoneda.yoneda_faithful, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_HΟƒ_eq_zero, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_Ο€_app_eq_sum, CategoryTheory.Sheaf.cartesianMonoidalCategorySnd_val, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₃, CategoryTheory.representablyFlat_op_iff, AlgebraicGeometry.Scheme.Hom.app_eq, CategoryTheory.linearYoneda_map_app, AlgebraicGeometry.RingedSpace.res_zero, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_map_base, CategoryTheory.OverPresheafAux.yonedaCollectionFunctor_obj, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_hom_eq_germ, CategoryTheory.GrothendieckTopology.W_of_preservesSheafification, CategoryTheory.SimplicialObject.Ξ΄_naturality, AlgebraicGeometry.Scheme.Hom.comp_appLE, AlgebraicGeometry.Scheme.Modules.restrictFunctorComp_hom_app_app, CategoryTheory.Limits.end_.condition, CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_comp_assoc, SSet.Truncated.HomotopyCategory.mk_surjective, TopCat.Presheaf.germ_res_assoc, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec, CategoryTheory.Limits.preservesColimitsOfSize_op, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_right, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, HomologicalComplex.opcyclesOpIso_hom_naturality_assoc, AlgebraicGeometry.Spec.map_preimage_unop, CategoryTheory.Limits.opCoproductIsoProduct'_inv_comp_inj, SSet.horn₃₁.desc.multicofork_Ο€_zero_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, SSet.Subcomplex.image_monotone, SSet.horn_obj, CategoryTheory.sectionsFunctorNatIsoCoyoneda_inv_app_coe, CategoryTheory.NatIso.op_isoWhiskerRight, TopCat.Presheaf.germToPullbackStalk_stalkPullbackHom, CondensedSet.epi_iff_surjective_on_stonean, CategoryTheory.preadditiveYonedaObj_obj_isModule, AlgebraicGeometry.Scheme.Modules.restrictFunctorComp_inv_app_app, AlgebraicGeometry.Ξ“SpecIso_obj_hom, CategoryTheory.Presieve.IsSheafFor.comp_iff_of_preservesPairwisePullbacks, CategoryTheory.ComposableArrows.opEquivalence_functor_obj_map, SSet.Truncated.StrictSegal.spine_Ξ΄_arrow_lt, CategoryTheory.SimplicialObject.Οƒ_def, SSet.leftUnitor_inv_app_apply, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.ShortComplex.HomologyData.unop_left, AlgebraicGeometry.Scheme.SpecΞ“Identity_app, CategoryTheory.Functor.representable_preservesLimit, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_map_val_app, CategoryTheory.Presheaf.restrictedULiftYoneda_map_app, SSet.skeleton_obj_eq_top, SSet.Subcomplex.yonedaEquiv_coe, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_naturality_assoc, CategoryTheory.RelCat.unopFunctor_comp_opFunctor_eq, AlgebraicGeometry.Spec.germ_stalkMapIso_hom_assoc, PresheafOfModules.presheaf_map_apply_coe, AlgebraicGeometry.Scheme.IdealSheafData.le_ofIdeals_iff, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_map, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac, AlgebraicGeometry.Scheme.Hom.preimage_basicOpen_top, InfiniteGalois.isOpen_mulEquivToLimit_image_fixingSubgroup, CategoryTheory.Limits.spanOp_inv_app, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, AlgebraicGeometry.FormallyUnramified.formallyUnramified_of_affine_subset, CategoryTheory.Functor.ofOpSequence_obj, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, AlgebraicGeometry.StructureSheaf.IsLocalization.to_basicOpen, CategoryTheory.Equivalence.rightOp_unitIso_hom_app, CategoryTheory.fullyFaithfulSheafToPresheaf_preimage_val, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.full_embedding, AlgebraicGeometry.Scheme.Opens.germ_stalkIso_inv_assoc, CategoryTheory.Presieve.isSheafFor_arrows_iff, HomologicalComplex.quasiIsoAt_unopFunctor_map_iff, CategoryTheory.RanIsSheafOfIsCocontinuous.fac_assoc, AlgebraicGeometry.formallySmooth_stalkMap_iff, CategoryTheory.preservesLimits_preadditiveCoyoneda_obj, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_assoc, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, AlgebraicGeometry.Scheme.Modules.restrict_map, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, CategoryTheory.Groupoid.invEquivalence_inverse_obj, CategoryTheory.linearYoneda_obj_obj_isAddCommGroup, CategoryTheory.Limits.preservesFiniteColimits_of_leftOp, CategoryTheory.Limits.preservesFiniteLimits_of_rightOp, AlgebraicGeometry.instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteSpecOfFinite, CommAlgCat.fst_unop_hom, CategoryTheory.isIso_iff_isIso_yoneda_map, smoothSheafCommRing.evalHom_germ, CategoryTheory.essImage_yonedaGrp, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three, CategoryTheory.Sheaf.natTransΞ“Res_app, CategoryTheory.Limits.Fork.op_pt, SSet.instFiniteObjOppositeSimplexCategoryOfFinite, AlgebraicGeometry.HasRingHomProperty.iff_appLE, PresheafOfModules.Derivation.congr_d, CategoryTheory.cosimplicialSimplicialEquiv_inverse_obj, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_map_assoc, CategoryTheory.cokernel.Ο€_unop, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality', CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom, SSet.RelativeMorphism.le_preimage, CategoryTheory.Functor.map_shift_unop, CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_obj, AlgebraicGeometry.IsAffineOpen.self_le_basicOpen_union_iff, CategoryTheory.Limits.hasFiniteColimits_opposite, CategoryTheory.Functor.IsCoverDense.presheafIso_hom_app, AlgebraicGeometry.exists_appTop_Ο€_eq_of_isAffine_of_isLimit, CategoryTheory.sheafifyMap_sheafifyLift, AlgebraicGeometry.LocallyRingedSpace.GlueData.ΞΉ_isoSheafedSpace_inv, SSet.Truncated.id_app, Condensed.instPreservesFiniteProductsOppositeProfiniteVal, CategoryTheory.Join.opEquiv_functor_map_op_edge, CategoryTheory.Limits.walkingParallelPairOpEquiv_functor, AlgebraicGeometry.StructureSheaf.const_mul_cancel, CategoryTheory.Limits.preservesLimitsOfSize_of_unop, CategoryTheory.yonedaMonObj_obj_coe, CategoryTheory.Presheaf.app_localPreimage, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkβ‚€_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, HomologicalComplex.opcyclesOpIso_hom_toCycles_op, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, SSet.whiskerRight_app_apply, topToLocale_obj, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp_map, CategoryTheory.Functor.instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_preadditive_yoneda_obj', CategoryTheory.Presheaf.functorToRepresentables_obj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj, CategoryTheory.unop_inv_leftUnitor, CompHausLike.LocallyConstantModule.functor_obj_val, ContinuousMap.yonedaPresheaf_map, CategoryTheory.Functor.op_commShiftIso_hom_app_assoc, CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, SSet.StrictSegal.spineToSimplex_map, CategoryTheory.instLocallySmallFullSubcategoryFunctorOppositeTypeIsIndObject, SSet.rightUnitor_inv_app_apply, CategoryTheory.isIso_op, CategoryTheory.ShortComplex.RightHomologyData.op_K, CategoryTheory.yoneda_obj_obj, CategoryTheory.Join.opEquiv_functor_map_op_inclRight, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, CategoryTheory.uliftYonedaEquiv_comp, SSet.stdSimplex.face_obj, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, SheafOfModules.pushforwardCongr_hom_app_val_app, SSet.stdSimplex.nonDegenerateEquiv_apply_apply, CategoryTheory.sheafifyLift_id_toSheafify, CategoryTheory.evalEquiv_apply, SheafOfModules.toSheaf_map_val, CategoryTheory.Limits.Cofork.op_Ο€_app_zero, AlgebraicGeometry.Scheme.Ξ“evaluation_naturality_assoc, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, CategoryTheory.Square.unop_X₃, CategoryTheory.opOpEquivalence_inverse, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_right_as, CategoryTheory.Presheaf.freeYoneda_map, PresheafOfModules.pullback_assoc, CategoryTheory.Limits.opSpan_hom_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom_unop, CategoryTheory.Limits.Ο€_comp_colimitLeftOpIsoUnopLimit_inv_assoc, CategoryTheory.Limits.widePushoutShapeOp_map, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_ofIdealTop, AlgebraicGeometry.isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, SSet.stdSimplex.map_apply, SSet.instHasDimensionLTToSSetBotSubcomplex, CategoryTheory.Cat.opEquivalence_unitIso, CategoryTheory.Sheaf.isSheaf_of_isLimit, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_obj, AlgebraicTopology.AlternatingFaceMapComplex.Ξ΅_app_f_zero, HomologicalComplex.unop_X, AlgebraicGeometry.Scheme.component_nontrivial, CategoryTheory.whiskering_linearYoneda, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, CategoryTheory.Limits.isColimitCoconeUnopOfCone_desc, CategoryTheory.NatTrans.op_whiskerRight, LightCondensed.isoFinYonedaComponents_inv_comp, HomologicalComplex.opFunctor_map_f, AlgebraicGeometry.Scheme.zeroLocus_iInf_of_nonempty, CategoryTheory.LocalizerMorphism.LeftResolution.unop_w, CategoryTheory.ShortComplex.opEquiv_functor, SSet.Truncated.spine_map_vertex, CategoryTheory.Iso.op_trans, CategoryTheory.FunctorToTypes.rightAdj_map_app, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections_mem_grothendieckTopology, AlgebraicGeometry.Ξ“Spec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, AlgebraicGeometry.Ξ“Spec.adjunction_unit_app, CategoryTheory.ShortComplex.HomologyMapData.op_right, CategoryTheory.Functor.homObjFunctor_map_app, SSet.ΞΉβ‚€_snd, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableByβ‚‚'_homEquiv, AlgebraicGeometry.Scheme.basicOpen_pow, CategoryTheory.Limits.preservesLimitsOfSize_rightOp, CategoryTheory.sheafToPresheaf_Ξ΄, CategoryTheory.Subfunctor.image_isFinite, CategoryTheory.monoidalUnopUnop_Ξ΅, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_top, AlgebraicGeometry.HasRingHomProperty.appLE, SSet.Truncated.Edge.CompStruct.tensor_simplex_fst, CategoryTheory.MorphismProperty.LeftFraction.unop_f, CategoryTheory.Functor.isRepresentedBy_iff, CategoryTheory.instIsSplitEpiOppositeOpOfIsSplitMono, CategoryTheory.ShortComplex.fromOpcycles_op_cyclesOpIso_inv_assoc, AlgebraicGeometry.Scheme.Hom.ker_apply, SSet.PtSimplex.MulStruct.Ξ΄_succ_castSucc_map, CategoryTheory.Injective.instEnoughProjectivesOppositeOfEnoughInjectives, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_Ο€_assoc, CategoryTheory.Subfunctor.le_sheafify, CategoryTheory.Limits.preservesFiniteLimits_leftOp, TopCat.Sheaf.existsUnique_gluing, CategoryTheory.sheafBotEquivalence_inverse_map_val, AlgebraicGeometry.Scheme.IdealSheafData.ideal_comap_of_isOpenImmersion, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.whiskering_linearCoyonedaβ‚‚, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp, CategoryTheory.typeEquiv_unitIso_inv_app, CategoryTheory.Functor.IsLeftAdjoint.rightOp, CategoryTheory.NatTrans.unop_whiskerRight, classifyingSpaceUniversalCover_map, AlgebraicGeometry.AffineSpace.SpecIso_inv_appTop_coord, CategoryTheory.MorphismProperty.RightFractionRel.op, CategoryTheory.instRepresentablyCoflatOppositeOpOfRepresentablyFlat, CategoryTheory.Limits.Cone.equiv_hom_fst, AlgebraicGeometry.AffineSpace.functor_obj_map, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_inv_app'_assoc, CategoryTheory.MorphismProperty.instHasTwoOutOfThreePropertyOppositeOp, CategoryTheory.NatTrans.op_comp_assoc, CategoryTheory.Limits.endFunctor_obj, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, SSet.StrictSegal.spineInjective, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_inv_app, AlgebraicGeometry.germ_stalkClosedPointIso_hom_assoc, CategoryTheory.ShortComplex.rightHomologyMap'_op, CategoryTheory.ShortComplex.opcyclesOpIso_hom_toCycles_op_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionObj, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, Condensed.isColimitLocallyConstantPresheaf_desc_apply, SSet.degenerate_le_preimage, CategoryTheory.Functor.leftOpRightOpEquiv_functor_obj_obj, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop_Ο€_apply, CompHausLike.LocallyConstant.functorToPresheaves_map_app, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_hom_app, CategoryTheory.factorThruImage_comp_imageUnopOp_inv, SSet.Subcomplex.mem_nonDegenerate_iff, CondensedSet.topCatAdjunctionUnit_val_app_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.FunctorToTypes.rightAdj_map_app_app, CategoryTheory.Join.opEquiv_inverse_obj_right_op, CategoryTheory.GrothendieckTopology.uliftYonedaCompSheafToPresheaf_inv_app_app, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ΞΉ, CategoryTheory.ShortComplex.opcyclesOpIso_hom_naturality, CategoryTheory.Limits.multispanIndexCoend_snd, CategoryTheory.NatIso.op_symm, CategoryTheory.Sieve.sieveOfUliftSubfunctor_apply, CategoryTheory.yonedaEquiv_yoneda_map, CategoryTheory.Limits.opProdIsoCoprod_inv_inl, CategoryTheory.OverPresheafAux.unitForward_naturalityβ‚‚, CategoryTheory.Limits.isLimitOfCoconeLeftOpOfCone_lift, AlgebraicGeometry.Scheme.evaluation_eq_zero_iff_notMem_basicOpen, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, CommMonCat.coyonedaType_obj_obj_coe, HomotopicalAlgebra.fibrations_eq_unop, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.sβ‚€_comp_δ₁_assoc, AlgebraicGeometry.Scheme.stalkMap_germ_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, AlgebraicGeometry.LocallyRingedSpace.restrictStalkIso_inv_eq_germ_apply, TopCat.Presheaf.SheafConditionEqualizerProducts.piInters.hom_ext_iff, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_hom_app_assoc, CategoryTheory.Limits.preservesFiniteColimits_leftOp, SSet.mem_skeleton_obj_iff_of_nonDegenerate, CategoryTheory.MorphismProperty.IsStableUnderBaseChange.op, CategoryTheory.Limits.BinaryFan.unop_mk, CategoryTheory.Subobject.functor_obj, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, CategoryTheory.LocalizerMorphism.instIsLocalizedEquivalenceOppositeOpOp, AlgebraicGeometry.SheafedSpace.ofRestrict_hom_c_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_invApp, PresheafOfModules.sheafification_map, CategoryTheory.Limits.opCompYonedaSectionsEquiv_apply_app, CategoryTheory.MorphismProperty.instHasOfPostcompPropertyOppositeOpOfHasOfPrecompProperty, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceΞ΄_apply, SSet.StrictSegal.spineToSimplex_interval, CategoryTheory.Idempotents.isIdempotentComplete_iff_opposite, AlgebraicTopology.DoldKan.Ξ“β‚‚_obj_X_map, CategoryTheory.toPresheafToSheafCompComposeAndSheafify_app, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_naturality_assoc, CategoryTheory.forgetEnrichmentOppositeEquivalence_unitIso, AlgebraicGeometry.Scheme.Hom.appIso_inv_app, InfiniteGalois.proj_adjoin_singleton_val, CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.mem, SSet.Truncated.Edge.map_associator_hom, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, CategoryTheory.Limits.isIndObject_iff, CategoryTheory.Limits.hasColimitsOfShape_op_of_hasLimitsOfShape, CategoryTheory.MorphismProperty.LeftFraction.op_f, TopCat.Presheaf.map_germ_eq_Ξ“germ_assoc, AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom, CategoryTheory.Limits.pushoutIsoOpPullback_inv_fst, HomologicalComplex.instQuasiIsoAtOppositeMapSymmOpFunctorOp, TopologicalSpace.Opens.op_map_id_obj, CategoryTheory.isSeparator_iff_faithful_coyoneda_obj, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, SSet.degenerate_zero, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_of_gt'_assoc, CategoryTheory.ShortComplex.RightHomologyData.unop_f', TopCat.Presheaf.app_surjective_of_stalkFunctor_map_bijective, CategoryTheory.Limits.BinaryFan.op_mk, CategoryTheory.Sieve.uliftNatTransOfLe_comm, CategoryTheory.Functor.op_iff, AlgebraicGeometry.Scheme.zeroLocus_radical, CategoryTheory.uliftYoneda_obj_map, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, TopCat.Sheaf.interUnionPullbackConeLift_right, AlgebraicGeometry.Scheme.Modules.restrictFunctorCongr_inv_app_app, LightProfinite.Extend.functor_map, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, CategoryTheory.Groupoid.invEquivalence_functor_map, CategoryTheory.Presheaf.final_toCostructuredArrow_comp_pre, CategoryTheory.GrothendieckTopology.uliftYonedaCompSheafToPresheaf_hom_app_app, CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafLeftAdjointSheafToPresheaf, CategoryTheory.yoneda_preservesLimitsOfShape, AlgebraicGeometry.Scheme.Hom.map_appLE_assoc, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_obj_val_obj, CategoryTheory.ShortComplex.SnakeInput.op_Lβ‚€, CategoryTheory.GrothendieckTopology.map_yonedaEquiv', CategoryTheory.GrothendieckTopology.W_inverseImage_whiskeringLeft, LightCondensed.instPreservesLimitsOfShapeOppositeLightProfiniteDiscreteCarrier, AlgebraicGeometry.Scheme.AffineZariskiSite.presieveOfSections_surjective, CategoryTheory.sheafBotEquivalence_unitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionUnitIso, SSet.Truncated.Edge.src_eq, CategoryTheory.Functor.initial_op_of_final, CategoryTheory.Presieve.preservesTerminal_of_isSheaf_for_empty, CategoryTheory.Sieve.natTransOfLe_comm, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ο„l, CategoryTheory.kernelUnopOp_hom, SSet.stdSimplex.mem_face_iff, CategoryTheory.SimplicialObject.Augmented.rightOp_right_map, AlgebraicGeometry.StructureSheaf.const_one, CategoryTheory.TwoSquare.guitartExact_op_iff, SSet.Truncated.rightExtensionInclusion_right_as, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, AlgebraicGeometry.Scheme.Opens.ΞΉ_appIso, CategoryTheory.NatTrans.op_whiskerLeft_assoc, CategoryTheory.Equivalence.unop_counitIso, PresheafOfModules.surjective_of_epi, CategoryTheory.eHomFunctor_map_app, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₁, AlgebraicGeometry.IsAffineOpen.isoSpec_inv_toSpecΞ“, AlgebraicGeometry.StructureSheaf.globalSectionsIso_hom, SheafOfModules.instPreservesFiniteLimitsFunctorOppositeAddCommGrpCatCompSheafToSheafSheafToPresheaf, CategoryTheory.uliftYoneda_obj_obj, CategoryTheory.typeEquiv_counitIso_inv_app_val_app, CategoryTheory.ShortComplex.homologyOpIso_hom_naturality_assoc, CategoryTheory.OverPresheafAux.counitAuxAux_inv, CategoryTheory.MorphismProperty.IsMultiplicative.op, AlgebraicGeometry.Scheme.Hom.map_appLE'_assoc, SSet.stdSimplex.coe_edge_down_toOrderHom, CategoryTheory.preservesFiniteColimits_preadditiveYonedaObj_of_injective, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.IsAffineOpen.toSpecΞ“_isoSpec_inv, CategoryTheory.ComposableArrows.opEquivalence_inverse_obj, AlgebraicGeometry.Scheme.Hom.appIso_inv_naturality, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄'_assoc, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal, CategoryTheory.Limits.opProductIsoCoproduct'_comp_self, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map, CategoryTheory.instIsEquivalenceOppositeOpOp, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_self', CategoryTheory.Limits.Ο€_comp_colimitOpIsoOpLimit_inv_assoc, LightCondensed.forget_map_val_app, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinset_obj_map, AlgebraicGeometry.Scheme.basicOpen_add_le, AlgebraicGeometry.Scheme.Hom.comp_app_assoc, AlgebraicGeometry.Scheme.comp_app, CategoryTheory.yonedaMon_map_app, CategoryTheory.shrinkYonedaEquiv_naturality, CategoryTheory.Injective.projective_iff_injective_op, AlgebraicGeometry.Scheme.zeroLocus_map, AlgebraicGeometry.Scheme.Hom.finite_app, TopCat.Presheaf.stalk_hom_ext_iff, LightCondensed.isoLocallyConstantOfIsColimit_inv, AlgebraicGeometry.Scheme.AffineZariskiSite.coequifibered_iff_forall_isLocalizationAway, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_zeroLocus, CategoryTheory.Functor.opUnopEquiv_functor, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_inv_eq_germ_apply, AlgebraicGeometry.Scheme.evaluation_naturality, CategoryTheory.Limits.IsIndObject.finallySmall, CategoryTheory.Presheaf.imageSieve_apply, CategoryTheory.ShortComplex.LeftHomologyData.op_Q, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, Alexandrov.principals_obj, CategoryTheory.yonedaEquiv_naturality', Condensed.comp_val, CategoryTheory.Functor.instIsRepresentableObjOppositeTypeYoneda, AlgebraicGeometry.Ξ“Spec.left_triangle, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΞ“_app_assoc, CategoryTheory.sheafBotEquivalence_inverse_obj_val, AlgebraicGeometry.Scheme.Hom.ideal_ker_le, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, AlgebraicGeometry.AffineSpace.comp_homOfVector, CondensedMod.hom_naturality_apply, AlgebraicGeometry.smooth_iff, CategoryTheory.isDetector_iff_reflectsIsomorphisms_coyoneda_obj, CategoryTheory.monoidalUnopUnop_Ξ΄, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, SSet.ι₁_snd_assoc, SimplicialObject.Splitting.ofIso_isColimit', PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_hom_app, SSet.horn.edge_coe, HomologicalComplex.isSupportedOutside_op_iff, HomologicalComplex.unopEquivalence_unitIso, AlgebraicGeometry.Scheme.Hom.appIso_hom', TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Ξ΄_eq_zero, AlgebraicGeometry.Scheme.zeroLocus_inf, CategoryTheory.Limits.preservesColimitsOfSize_of_unop, CategoryTheory.Presieve.preservesProduct_of_isSheafFor, CategoryTheory.WithTerminal.opEquiv_functor_obj, CategoryTheory.Limits.compCoyonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.cokernel.Ο€_op, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_homEquiv_apply', CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_hom_app_assoc, CategoryTheory.Limits.coneOfSectionCompYoneda_pt, CategoryTheory.Adjunction.corepresentableBy_homEquiv, AlgebraicGeometry.Scheme.IdealSheafData.ofIdeals_mono, AlgebraicGeometry.Scheme.instIsOpenImmersionToSpecΞ“OfIsQuasiAffine, CategoryTheory.ObjectProperty.instSmallOppositeOp_1, AlgebraicGeometry.Scheme.homOfLE_appTop, ContinuousMap.yonedaPresheaf_obj, CategoryTheory.Equalizer.Presieve.sheaf_condition, CategoryTheory.cosimplicialSimplicialEquiv_functor_map_app, CategoryTheory.Limits.isLimitConeUnopOfCocone_lift, CategoryTheory.NatIso.unop_symm, CategoryTheory.Presheaf.isLocallyInjective_whisker_iff, CategoryTheory.Cat.opFunctor_map, AlgebraicGeometry.germ_injective_of_isIntegral, CategoryTheory.Functor.representable_preservesLimits, AlgebraicGeometry.Scheme.isoSpec_inv_naturality_assoc, CategoryTheory.Equivalence.inverseFunctorObjIso_inv, AlgebraicGeometry.StructureSheaf.smul_const, TopCat.Presheaf.pushforward_obj_obj, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', AlgebraicGeometry.IsAffineOpen.fromSpec_app_self, AlgebraicGeometry.Spec.toPresheafedSpace_map_op, CategoryTheory.Limits.IndObjectPresentation.yoneda_isColimit_desc, PresheafOfModules.injective_of_mono, CategoryTheory.Limits.instHasLimitOppositeDiscreteOpFunctor, CategoryTheory.Presheaf.tautologicalCocone'_pt, AlgebraicGeometry.isClosedImmersion_iff_isAffineHom, AlgebraicGeometry.instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteWalkingPairSpec, CategoryTheory.whiskering_preadditiveYoneda, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_inv_app, CategoryTheory.Limits.opCospan_hom_app, CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible.familyOfElements_apply, CategoryTheory.Limits.preservesFiniteColimits_op, SSet.Truncated.StrictSegal.spine_Ξ΄_arrow_gt, HomologicalComplex.exactAt_op_iff, PresheafOfModules.isoMk_inv_app, CategoryTheory.isSheaf_pointwiseColimit, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο€, CategoryTheory.lan_preservesFiniteLimits_of_preservesFiniteLimits, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_inv_app'_assoc, CategoryTheory.Functor.unopOpIso_hom_app, CategoryTheory.uliftYonedaEquiv_uliftYoneda_map, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, HomologicalComplex.opEquivalence_counitIso, AlgebraicGeometry.AffineSpace.hom_ext_iff, CategoryTheory.Limits.preservesFiniteProducts_leftOp, CategoryTheory.PresheafOfGroups.OneCocycle.ev_symm, CategoryTheory.instFaithfulFunctorOppositeTypeShrinkYoneda, CategoryTheory.yoneda_obj_map, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, SSet.stdSimplex.isoNerve_hom_app_apply, CategoryTheory.ShortComplex.instHasHomologyOppositeOp, CategoryTheory.Cat.opFunctorInvolutive_hom_app_toFunctor_map, AlgebraicGeometry.Ξ“Spec.unop_locallyRingedSpaceAdjunction_counit_app', SSet.Subcomplex.mem_degenerate_iff, AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ_assoc, TopCat.Presheaf.app_bijective_of_stalkFunctor_map_bijective, CategoryTheory.full_linearCoyoneda, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, AlgebraicGeometry.Scheme.Hom.preimage_basicOpen, CategoryTheory.RelCat.opEquivalence_functor, AlgebraicTopology.DoldKan.compatibility_Nβ‚‚_N₁_karoubi, CategoryTheory.IsGrothendieckAbelian.preservesColimit_coyoneda_obj_of_mono, Condensed.epi_iff_locallySurjective_on_compHaus, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, CategoryTheory.Pretriangulated.Opposite.contractible_distinguished, AlgebraicTopology.DoldKan.QInfty_f_naturality_assoc, CategoryTheory.Functor.op_comp_isSheaf_of_types, CategoryTheory.Cat.opFunctorInvolutive_hom_app_toFunctor_obj, AlgebraicTopology.DoldKan.MorphComponents.postComp_a, AlgebraicGeometry.Scheme.IdealSheafData.subschemeΞΉ_app, AlgebraicGeometry.Scheme.Hom.appLE_appIso_inv, HomologicalComplex.fromOpcycles_op_cyclesOpIso_inv_assoc, CategoryTheory.GrothendieckTopology.Point.W_isInvertedBy_presheafFiber, CategoryTheory.Equivalence.sheafCongr.inverse_obj_val_obj, CategoryTheory.isDetector_unop_iff, CategoryTheory.Limits.coneOfCoconeLeftOp_pt, CategoryTheory.Sheaf.adjunction_counit_app_val, CategoryTheory.ObjectProperty.instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape_1, CategoryTheory.cokernelOpUnop_inv, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CategoryTheory.coyonedaEquiv_naturality, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄', AlgebraicGeometry.Scheme.isoSpec_Spec_hom, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, Opens.mayerVietorisSquare_Xβ‚‚, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheaf_map, SSet.ι₁_app_fst, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, SSet.skeleton_succ, CategoryTheory.Pseudofunctor.CoGrothendieck.ext_iff, CategoryTheory.GrothendieckTopology.yonedaEquiv_comp, AlgebraicGeometry.Scheme.basicOpen_res_eq, CategoryTheory.coyonedaEquiv_apply, SSet.Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top, PresheafOfModules.pushforward_obj_map_apply, CategoryTheory.ObjectProperty.isDetecting_unop_iff, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso_unop, CategoryTheory.Limits.compCoyonedaSectionsEquiv_apply_app, CategoryTheory.Limits.kernelOrderHom_coe, SSet.ι₁_snd, AlgebraicGeometry.Scheme.Hom.app_invApp', CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, CategoryTheory.Equivalence.rightOp_inverse_obj, CategoryTheory.Pretriangulated.op_distinguished, CategoryTheory.Functor.rightOpLeftOpIso_inv_app, AlgebraicGeometry.isNoetherian_iff_of_finite_iSup_eq_top, SSet.Truncated.StrictSegal.spineInjective, AlgebraicGeometry.Scheme.image_basicOpen, CategoryTheory.Enriched.FunctorCategory.enrichedComp_Ο€_assoc, CategoryTheory.DinatTrans.compNatTrans_app, HomologicalComplex.homologyOp_hom_naturality_assoc, AlgebraicGeometry.tilde.isIso_toOpen_top, CategoryTheory.Presheaf.isLocallyInjective_forget_iff, CategoryTheory.regularTopology.isLocallySurjective_iff, PartialOrder.mem_range_nerve_Οƒ_iff, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app, TopCat.Presheaf.SubmonoidPresheaf.map, CategoryTheory.Abelian.extFunctor_obj, CategoryTheory.ShortComplex.cyclesOpIso_inv_naturality, CategoryTheory.Limits.coneRightOpOfCocone_Ο€, CategoryTheory.Equalizer.Presieve.Arrows.FirstObj.ext_iff, SimplicialObject.Splitting.Ο€Summand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, CategoryTheory.kernel.ΞΉ_unop, CategoryTheory.ShortComplex.Splitting.unop_r, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_invApp_assoc, CategoryTheory.NatTrans.equifibered_op_iff, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Functor.IsCoverDense.Types.appHom_restrict, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_invApp, CategoryTheory.OverPresheafAux.counitBackward_counitForward, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_hom_eq_germ_apply, CategoryTheory.Comma.unopFunctor_obj, AlgebraicGeometry.HasRingHomProperty.appTop, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_Ο€_assoc, CategoryTheory.faithful_linearCoyoneda, HomologicalComplex.unopSymm_X, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, AlgebraicGeometry.LocallyRingedSpace.basicOpen_zero, CategoryTheory.Functor.functorHom_ext_iff, CategoryTheory.op_braiding, CategoryTheory.Presheaf.w, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryTheory.unop_neg, TopCat.Sheaf.existsUnique_gluing', SSet.Path.map_arrow, CategoryTheory.Pretriangulated.Opposite.commShift_natTrans_op_int, CategoryTheory.Functor.rightOp_faithful, CategoryTheory.Limits.Wedge.condition, CategoryTheory.Sheaf.Ξ“ObjEquivSections_naturality_symm, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_obj_fiber, CategoryTheory.Abelian.extFunctor_map_app, CategoryTheory.Functor.rightOp_full, CategoryTheory.Iso.unop_hom_inv_id_app, CategoryTheory.Coyoneda.naturality, Condensed.isoLocallyConstantOfIsColimit_inv, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft_op, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.ShortComplex.instHasLeftHomologyOppositeOpOfHasRightHomology, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot, CategoryTheory.monoidalOpOp_ΞΌ, CategoryTheory.Sheaf.isLocallyInjective_iff_injective, CategoryTheory.Limits.hasEqualizers_opposite, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_inv_app_app, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_left, AlgebraicGeometry.IsIntegral.component_integral, CategoryTheory.Pseudofunctor.isStackFor_iff, PresheafOfModules.forgetToPresheafModuleCatObjObj_coe, CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.Equivalence.congrLeftFunctor_obj, CategoryTheory.Presheaf.isSeparator, AlgebraicGeometry.StructureSheaf.const_zero, CategoryTheory.ShortComplex.unop_X₁, CategoryTheory.Pretriangulated.mem_distTriang_op_iff, AlgebraicGeometry.Scheme.Hom.comp_appLE_assoc, CategoryTheory.TwoSquare.natTrans_op, TopCat.presheafToTypes_map, CategoryTheory.SimplicialObject.isCoskeletal_iff, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk_assoc, AlgebraicGeometry.Scheme.isPullback_toSpecΞ“_toSpecΞ“, CategoryTheory.ShortComplex.unopMap_Ο„β‚‚, CategoryTheory.Functor.opUnopEquiv_inverse, HomologicalComplex.cyclesOpIso_inv_naturality, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_map_bijective, CategoryTheory.yonedaGrp_naturality_assoc, AddCommMonCat.coyoneda_map_app, AlgebraicGeometry.Scheme.instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensBot, AlgebraicGeometry.LocallyRingedSpace.restrictStalkIso_hom_eq_germ_apply, CategoryTheory.Sheaf.Ξ“Res_map_assoc, AlgebraicGeometry.Scheme.Ξ“SpecIso_naturality, CategoryTheory.Under.mapFunctor_map, SSet.whiskerLeft_app_apply, CategoryTheory.Adjunction.unop_counit, CategoryTheory.Limits.coconeOfConeRightOp_ΞΉ, CategoryTheory.Limits.Fork.op_Ο€, CategoryTheory.PresheafOfGroups.OneCochain.mul_ev, CategoryTheory.Limits.preservesLimitsOfSize_of_rightOp, AlgebraicGeometry.Scheme.restrictFunctorΞ“_hom_app, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, AlgebraicGeometry.Scheme.Modules.restrictFunctorCongr_hom_app_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ο„r, AlgebraicGeometry.Scheme.Ξ“_map_op, CategoryTheory.Iso.unop_symm, HomologicalComplex.opcyclesOpIso_hom_naturality, CategoryTheory.Functor.instIsRepresentableCompOppositeUliftFunctor, CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_iff_ofArrows, CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_map, AlgebraicGeometry.instIsIsoSchemeAppUnitOppositeCommRingCatAdjunctionOfIsAffine, CategoryTheory.Limits.isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits, TopCat.Sheaf.comp_app, AlgebraicGeometry.Scheme.Modules.restrictFunctorId_inv_app_app, smoothSheafCommRing.ΞΉ_forgetStalk_inv_apply, CategoryTheory.PreOneHypercover.multicospanIndex_left, PresheafOfModules.unitHomEquiv_apply_coe, CategoryTheory.Equivalence.symmEquiv_functor, Condensed.lanPresheafNatIso_hom_app, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CategoryTheory.Equivalence.symmEquivInverse_obj_functor, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_map_fiber, CategoryTheory.isEventuallyConstant_of_isArtinianObject, CategoryTheory.Limits.widePushoutShapeOp_obj, AlgebraicGeometry.SheafedSpace.Ξ“_map, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.mapMono_on_summand_id, CategoryTheory.Sieve.functorInclusion_app, CategoryTheory.ShortComplex.opEquiv_counitIso, CategoryTheory.Pretriangulated.shiftFunctorZero_op_hom_app, Opens.coe_mayerVietorisSquare_X₁, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply, SSet.comp_app, AlgebraicGeometry.Scheme.Modules.pushforwardComp_hom_app_app, CategoryTheory.OverPresheafAux.yonedaCollectionPresheaf_obj, TopCat.Presheaf.IsSheaf.isSheafPreservesLimitPairwiseIntersections, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionObj_unop, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_succ', CategoryTheory.Pseudofunctor.presheafHom_map, AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq, CategoryTheory.prodOpEquiv_unitIso_inv_app, PresheafOfModules.freeObj_obj, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_map_left, AlgebraicGeometry.germ_stalkClosedPointIso_hom, CategoryTheory.Join.opEquiv_inverse_map_inclLeft_op, TopCat.Presheaf.isLocallySurjective_iff, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, fintypeToFinBoolAlgOp_map, CategoryTheory.Limits.multispanIndexCoend_left, AlgebraicGeometry.Scheme.toSpecΞ“_isoSpec_inv, CategoryTheory.MorphismProperty.LeftFraction.op_s, AlgebraicGeometry.IsFinite.instHasAffinePropertyAndIsAffineFiniteCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopHomAppTop, CategoryTheory.Functor.final_op_of_initial, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, SheafOfModules.pushforwardCongr_inv_app_val_app, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_Ο€, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionUnitIso, HomologicalComplex.instHasHomologyOppositeObjSymmOpFunctorOp, AlgebraicGeometry.Scheme.Modules.mapPresheaf_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, CategoryTheory.preservesLimits_preadditiveYoneda_obj, CategoryTheory.Adjunction.rightOp_counit, CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafPresheafToSheaf, SSet.StrictSegal.spineToSimplex_spine, SSet.Subcomplex.prod_obj, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, CategoryTheory.Functor.IsCoverDense.Types.appIso_inv, CommAlgCat.snd_unop_hom, SimplicialObject.Splitting.ofIso_ΞΉ, PresheafOfModules.Sheafify.smul_add, CategoryTheory.isCodetector_iff_reflectsIsomorphisms_yoneda_obj, CategoryTheory.Limits.pullbackIsoOpPushout_inv_fst, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, CategoryTheory.Equivalence.sheafCongr.unitIso_hom_app_val_app, CategoryTheory.monoidalOpOp_Ξ·, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, typeToBoolAlgOp_map, AlgebraicGeometry.Scheme.Hom.preservesLocalization_normalizationDiagramMap, CategoryTheory.op_inv_leftUnitor, SSet.Truncated.Edge.map_whiskerLeft, CategoryTheory.Functor.op_commShiftIso_inv_app_assoc, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_inv_app_homβ‚‚, CategoryTheory.RetractArrow.op_i_right, AlgebraicGeometry.Ξ“Spec.isIso_locallyRingedSpaceAdjunction_counit, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, CategoryTheory.additive_coyonedaObj', CategoryTheory.Subfunctor.range_eq_ofSection', SimplicialObject.opFunctor_obj_Ξ΄, CategoryTheory.unop_add, CategoryTheory.Functor.FullyFaithful.homNatIso'_hom_app_down, CategoryTheory.Functor.leftOpId_inv_app, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanMap_app, CategoryTheory.SimplicialObject.Οƒ_comp_Οƒ, CategoryTheory.Limits.pullbackIsoOpPushout_inv_snd, AlgebraicGeometry.Spec.sheafedSpaceMap_hom_c_app, CategoryTheory.typeEquiv_functor_obj_val_map, SSet.const_app, AlgebraicGeometry.PresheafedSpace.GlueData.ΞΉ_isOpenEmbedding, TopCat.Presheaf.Pushforward.comp_inv_app, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, AlgebraicGeometry.Scheme.instFullOppositeIdealSheafDataOverSubschemeFunctor, CategoryTheory.regularTopology.isSheaf_yoneda_obj, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso_op, AlgebraicGeometry.Scheme.evaluation_naturality_apply, AlgebraicGeometry.Spec.toSheafedSpace_obj, CategoryTheory.Functor.RepresentableBy.equivUliftYonedaIso_symm_apply_homEquiv, CategoryTheory.MorphismProperty.MapFactorizationData.op_i, AlgebraicGeometry.Scheme.toSpecΞ“_appTop, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_hom_val, CategoryTheory.Limits.coendFunctor_obj, SSet.Truncated.Edge.map_snd, CategoryTheory.ShortComplex.unop_X₃, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.Limits.end_.map_id, AlgebraicGeometry.Scheme.Hom.appIso_inv_naturality_assoc, CategoryTheory.leftDualFunctor_map, AlgebraicTopology.DoldKan.MorphComponents.id_Ο†, SSet.stdSimplex.instFiniteObjOppositeSimplexCategory, AlgebraicGeometry.Scheme.Hom.appLE_map_assoc, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_auxβ‚‚, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_zero, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄'', PresheafOfModules.freeAdjunctionUnit_app, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', CategoryTheory.op_rightUnitor, smoothSheaf.obj_eq, CategoryTheory.Presieve.FamilyOfElements.singletonEquiv_symm_apply, CategoryTheory.Functor.IsLocalization.op_iff, CategoryTheory.MorphismProperty.LeftFraction.unop_s, CategoryTheory.Functor.unop_obj, CategoryTheory.Pretriangulated.triangleOpEquivalence_counitIso, AlgebraicGeometry.PresheafedSpace.comp_c_app_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Functor.ofOpSequence_map_homOfLE_succ, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft_unop, SSet.Subcomplex.preimage_obj, AlgebraicGeometry.instIsRightAdjointCommRingCatOppositeSchemeΞ“, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.isoRestrict_hom_hom_c_app, AlgebraicGeometry.IsAffineOpen.iSup_basicOpen_eq_self_iff, SSet.Subcomplex.image_top, AlgebraicGeometry.Scheme.Hom.comp_appIso, CategoryTheory.Limits.hasPushouts_opposite, CategoryTheory.Pretriangulated.triangleOpEquivalence_functor, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, AlgebraicGeometry.Scheme.basicOpen_one, CategoryTheory.Limits.isIndObject_limit_comp_yoneda, CategoryTheory.Limits.preservesColimits_leftOp, CategoryTheory.Square.op_X₁, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionObj, HomologicalComplex.extend_op_d, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, PresheafOfModules.presheaf_obj_coe, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_hom_app_val_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, CategoryTheory.NatTrans.op_app, AlgebraicTopology.DoldKan.Ξ“β‚€_map_app, CategoryTheory.Limits.isFiltered_costructuredArrow_yoneda_iff_nonempty_preservesFiniteLimits, CategoryTheory.uliftYoneda_obj_map_down, CategoryTheory.SimplicialObject.comp_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Limits.PushoutCocone.op_Ο€_app, AlgebraicGeometry.Scheme.Hom.appIso_inv_appLE_assoc, CategoryTheory.NatTrans.op_comp, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_invApp, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, CategoryTheory.Functor.sheafPushforwardContinuousComp_inv_app_val_app, SSet.Truncated.Edge.map_id, CategoryTheory.Subfunctor.IsGeneratedBy.iSup_eq, AlgebraicGeometry.Scheme.Modules.Hom.id_app, CategoryTheory.Adjunction.rightOp_eq, CategoryTheory.Limits.Cone.equiv_inv_Ο€, CategoryTheory.rightDualFunctor_map, SSet.orderEmbeddingN_apply, CategoryTheory.isCofilteredOrEmpty_op_of_isFilteredOrEmpty, CategoryTheory.ShortComplex.hasRightHomology_iff_unop, AlgebraicGeometry.targetAffineLocally_affineAnd_iff, CompHausLike.LocallyConstant.adjunction_left_triangle, AlgebraicGeometry.StructureSheaf.algebraMap_obj_top_bijective, CategoryTheory.extensiveTopology.isLocallySurjective_iff, AlgebraicGeometry.Scheme.Hom.appIso_inv_app_assoc, CategoryTheory.NatIso.unop_whiskerRight, CategoryTheory.Limits.Ο€_comp_colimitOpIsoOpLimit_inv, CategoryTheory.Functor.leftOpRightOpEquiv_inverse_map, HomotopicalAlgebra.weakEquivalences_unop_iff, CategoryTheory.SimplicialObject.Truncated.trunc_obj_map, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_hom_app, CategoryTheory.Limits.hasProductsOfShape_opposite, HomologicalComplex.opInverse_obj, CategoryTheory.Cat.opFunctorInvolutive_inv_app_toFunctor_map, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_hom_app, CategoryTheory.Limits.hasFiniteCoproducts_opposite, CategoryTheory.Presheaf.isSheaf_iff_multiequalizer, HomologicalComplex.unopSymm_d, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_Ο€_stalk_isLocalHom, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_self, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_appLE_assoc, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_pt, CategoryTheory.Sieve.uliftNatTransOfLe_app_down_coe, SimplicialObject.Split.Hom.comm, AlgebraicGeometry.Scheme.Ξ“_map, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.full_preadditiveCoyoneda, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_assoc, AlgebraicGeometry.AffineScheme.forgetToScheme_map, CategoryTheory.SimplicialObject.whiskering_map_app_app, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj, CochainComplex.homotopyOp_hom_eq, CategoryTheory.cones_obj_map_app, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο€_assoc, AlgebraicGeometry.Scheme.zeroLocus_eq_univ_iff_subset_nilradical_of_isCompact, AlgebraicTopology.DoldKan.QInfty_f_naturality, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_inv_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.instIsIsoCommRingCatInvApp, CategoryTheory.NatTrans.removeRightOp_app, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality_apply, TopCat.Presheaf.stalkFunctor_map_germ_apply, HomologicalComplex.isStrictlySupported_op_iff, TopCat.Presheaf.germ_res_apply', CategoryTheory.Square.opFunctor_map_τ₁, CategoryTheory.Functor.instIsEquivalenceOppositeOp, CategoryTheory.Limits.opCospan_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ΞΉ_assoc, CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_op_iff_unop, CategoryTheory.Functor.WellOrderInductionData.Extension.map_succ, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_inv_app_val_app, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_obj, AlgebraicGeometry.Scheme.Modules.Hom.isIso_iff_isIso_app, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, Condensed.isoFinYonedaComponents_inv_comp, CategoryTheory.Sheaf.coneΞ“_pt, AlgebraicGeometry.Spec_zeroLocus_eq_zeroLocus, SSet.face_le_horn, SSet.Subcomplex.image_preimage_le, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp, CategoryTheory.Equivalence.sheafCongr.functor_map_val_app, AlgebraicGeometry.Scheme.Opens.ΞΉ_appTop, AlgebraicGeometry.Scheme.Modules.Hom.comp_app, CategoryTheory.unopHom_apply, CategoryTheory.Limits.hasLimit_of_hasColimit_leftOp, CategoryTheory.Functor.sheafPushforwardContinuousComp_hom_app_val_app, HomologicalComplex.cyclesOpIso_hom_naturality_assoc, CategoryTheory.instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, CategoryTheory.Adjunction.compPreadditiveYonedaIso_hom_app_app_apply, CategoryTheory.Limits.IndObjectPresentation.yoneda_ΞΉ_app, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄_self, CategoryTheory.ShortComplex.RightHomologyData.op_H, AddCommGrpCat.coyonedaType_obj_map, CategoryTheory.Square.opFunctor_obj, CategoryTheory.Limits.preservesFiniteProducts_op, CategoryTheory.instPreservesColimitsOfShapeSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreservesFiniteProductsColim, CategoryTheory.Functor.PullbackObjObj.Ο€_iso_of_iso_right_inv, CategoryTheory.Limits.Cone.equiv_hom_snd, CategoryTheory.preservesLimits_preadditiveYonedaObj, CategoryTheory.Limits.end_.hom_ext_iff, AlgebraicGeometry.Scheme.coprodPresheafObjIso_hom_snd, CategoryTheory.Limits.isLimitOfCoconeRightOpOfCone_lift, PresheafOfModules.toPresheaf_map_app_apply, CategoryTheory.Functor.RepresentableBy.homEquiv_comp, CategoryTheory.Equivalence.symmEquivInverse_obj_counitIso_inv, CategoryTheory.HasDetector.hasCodetector_op, CategoryTheory.yonedaCommGrpGrp_obj, AlgebraicGeometry.Scheme.map_basicOpen, CategoryTheory.Limits.FormalCoproduct.cechFunctor_map_app, CategoryTheory.isFiltered_op_of_isCofiltered, AddCommGrpCat.coyonedaType_obj_obj_coe, CondensedSet.continuous_coinducingCoprod, CategoryTheory.Limits.IsIndObject.instIsClosedUnderIsomorphismsFunctorOppositeType, CategoryTheory.Sieve.sieveOfSubfunctor_apply, CategoryTheory.Limits.PullbackCone.unop_ΞΉ_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, CategoryTheory.Square.unop_f₁₃, AlgebraicGeometry.Proj.zero_apply, SSet.Truncated.StrictSegal.spineToSimplex_vertex, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality_assoc, PresheafOfModules.Derivation'.d_app, PresheafOfModules.neg_app, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app, CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_obj, CategoryTheory.Limits.FormalCoproduct.evalOp_map_app, CategoryTheory.Adjunction.op_unit, AlgebraicGeometry.PresheafedSpace.GlueData.componentwise_diagram_Ο€_isIso, AlgebraicGeometry.isAffine_affineScheme, CategoryTheory.Functor.IsCoverDense.Types.presheafIso_inv_app, CategoryTheory.ShortComplex.opMap_Ο„β‚‚, CategoryTheory.Pretriangulated.mem_distTriang_op_iff', CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, CategoryTheory.Join.inclRightCompOpEquivInverse_hom_app_op, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk_assoc, CategoryTheory.Functor.RepresentableBy.isRepresentedBy, CategoryTheory.Functor.IsLeftAdjoint.leftOp, CategoryTheory.Functor.representable_preservesLimitsOfShape, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, CategoryTheory.Limits.cospanOp_hom_app, CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app', CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_w_apply, AlgebraicGeometry.Scheme.isoSpec_inv_naturality, CategoryTheory.Limits.hasColimit_of_hasLimit_rightOp, CategoryTheory.NatIso.op_associator, AlgebraicGeometry.IsAffineOpen.toSpecΞ“_fromSpec_assoc, CategoryTheory.coherentTopology.isSheaf_yoneda_obj, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, AlgebraicTopology.DoldKan.P_f_naturality_assoc, AlgebraicGeometry.StructureSheaf.const_algebraMap, CategoryTheory.ObjectProperty.limitsOfShape_eq_unop_colimitsOfShape, AlgebraicGeometry.Scheme.Hom.id_appIso, CategoryTheory.op_hom_braiding, CategoryTheory.MorphismProperty.rightFractionRel_op_iff, CategoryTheory.GrothendieckTopology.diagram_map, CategoryTheory.Sieve.uliftFunctorInclusion_app, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, smoothSheafCommRing.ΞΉ_forgetStalk_inv_assoc, skyscraperPresheafCocone_ΞΉ_app, CategoryTheory.Equivalence.inverseFunctorObj'_hom_app, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, CategoryTheory.Presheaf.hasSeparator, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ο„r, CategoryTheory.Functor.op_commShiftIso_inv_app, AlgebraicGeometry.instQuasiSeparatedToSpecΞ“OfQuasiSeparatedSpaceCarrierCarrierCommRingCat, CategoryTheory.Comma.unopFunctorCompSnd_inv_app, PresheafOfModules.map_comp, AlgebraicGeometry.IsAffineOpen.basicOpenSectionsToAffine_isIso, CategoryTheory.cocones_obj_map_app, PresheafOfModules.instPreservesLimitsOfShapeFunctorOppositeAbToPresheaf, CategoryTheory.coyonedaPreservesLimitsOfShape, SSet.Truncated.StrictSegal.spine_Ξ΄_vertex_ge, AlgebraicGeometry.Scheme.IdealSheafData.subschemeFunctor_obj, CategoryTheory.ShiftedHom.opEquiv'_symm_apply, AlgebraicGeometry.PresheafedSpace.map_id_c_app, SSet.StrictSegal.spineToSimplex_edge, TopCat.Presheaf.germ_exist, CategoryTheory.yonedaFunctor_preservesLimits, AlgebraicGeometry.exists_smooth_of_formallySmooth_stalk, AlgebraicGeometry.Scheme.comp_appTop_assoc, CategoryTheory.GrothendieckTopology.W_whiskerLeft_iff, RingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.typeEquiv_inverse_map, CategoryTheory.GrothendieckTopology.diagramPullback_app, AlgebraicGeometry.SheafedSpace.GlueData.ΞΉ_isoPresheafedSpace_inv, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.Limits.coconeOfConeRightOp_pt, CategoryTheory.Limits.widePullbackShapeOp_obj, TopCat.Presheaf.SheafConditionEqualizerProducts.res_Ο€, CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_left, AlgebraicGeometry.Scheme.local_affine, TopCat.Presheaf.germ_res, HomotopicalAlgebra.trivialCofibrations_op, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, CategoryTheory.OverPresheafAux.counitAux_hom, CategoryTheory.instPreservesFilteredColimitsOfSizeObjOppositeFunctorTypeCoyonedaOpOfIsFinitelyPresentable, CategoryTheory.Subfunctor.isSheaf_iff, AlgebraicGeometry.Scheme.IdealSheafData.ideal_top, CategoryTheory.Functor.leftOp_full, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_Οƒ, SSet.Truncated.StrictSegal.spineToSimplex_edge, CategoryTheory.MorphismProperty.op_inverseImage, CategoryTheory.CommSq.LiftStruct.opEquiv_symm_apply, CategoryTheory.Pretriangulated.instCommShiftOppositeOpOpEquivalenceInt, TopCat.Presheaf.instIsLocalizationCarrierObjOppositeOpensCarrierCommRingCatObjLocalizationPresheaf, CategoryTheory.Functor.leftOp_additive, SSet.Truncated.spine_arrow, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, AlgebraicGeometry.instIsAffineObjOppositeCommRingCatSchemeSpec, AlgebraicGeometry.Scheme.Hom.etale_appLE, CategoryTheory.Equivalence.leftOp_inverse_map, PresheafOfModules.evaluation_preservesColimitsOfSize, CompHausOpToFrame.faithful, CategoryTheory.Equivalence.inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, SSet.stdSimplex.monotone_apply, CategoryTheory.isoSheafify_hom, CategoryTheory.Pretriangulated.Opposite.commShift_adjunction_op_int, CategoryTheory.Square.opFunctor_map_Ο„β‚‚, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionRight_op, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, CategoryTheory.extensiveTopology.presheafIsLocallySurjective_iff, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_Ο€_app_isLocalHom, SheafOfModules.pushforwardComp_hom_app_val_app, CategoryTheory.RetractArrow.unop_r_right, AlgebraicGeometry.Scheme.isoSpec_Spec, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.unop_leftUnitor, CategoryTheory.GrothendieckTopology.Point.instIsIsoMapFunctorOppositePresheafFiberToSheafify, AlgebraicGeometry.Scheme.Hom.appLE_congr, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.yonedaGrpObj_map, CategoryTheory.Functor.unop_map, CategoryTheory.eHomFunctor_obj_map, TopCat.Presheaf.Pushforward.id_hom_app, CategoryTheory.unop_braiding, SSet.S.equivElements_apply_fst, CategoryTheory.Limits.isLimitConeOfCoconeRightOp_lift, CategoryTheory.Presheaf.isLocallySurjective_comp, TopCat.Presheaf.pullback_obj_obj_ext_iff, SSet.Subcomplex.ofSimplex_le_iff, CategoryTheory.forgetEnrichmentOppositeEquivalence_counitIso, CategoryTheory.MorphismProperty.RightFraction.op_f, HomotopicalAlgebra.instIsStableUnderRetractsOppositeWeakEquivalences, CategoryTheory.cosimplicialToSimplicialAugmented_obj, CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_id, CategoryTheory.Functor.RepresentableBy.homEquiv_unop_comp, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, AlgebraicGeometry.Scheme.IdealSheafData.isLocalization_away, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, SSet.N.le_iff_exists_mono, AlgebraicGeometry.Scheme.ofRestrict_toLRSHom_c_app, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_hom, CategoryTheory.Limits.hasLimit_op_of_hasColimit, CategoryTheory.OverPresheafAux.unitBackward_unitForward, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom_unop, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, CategoryTheory.Adjunction.compYonedaIso_inv_app_app, PartialOrder.mem_nerve_nonDegenerate_iff_strictMono, CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions_of_hasSheafCompose, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv, CategoryTheory.Comon.Comon_EquivMon_OpOp_unitIso, PresheafOfModules.evaluation_preservesFiniteLimits, AlgebraicGeometry.IsClosedImmersion.hasAffineProperty, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Join.opEquiv_functor_obj_op_left, SSet.Subcomplex.image_ofSimplex, CategoryTheory.Functor.IsRightAdjoint.op, PresheafOfModules.instPreservesLimitsOfSizeFunctorOppositeAbToPresheaf, CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition, CategoryTheory.Functor.hom_obj, CategoryTheory.Sheaf.adjunction_unit_app_val, AlgebraicGeometry.Scheme.preimage_opensRange_toSpecΞ“, SSet.Truncated.HomotopyCategory.homToNerveMk_app_one, CategoryTheory.Coyoneda.colimitCoconeIsColimit_desc, TopCat.Presheaf.app_injective_of_stalkFunctor_map_injective, CategoryTheory.Join.opEquiv_inverse_obj_left_op, CategoryTheory.Limits.SequentialProduct.cone_Ο€_app_comp_Pi_Ο€_pos, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp_assoc, CategoryTheory.Functor.opInv_map, CategoryTheory.Limits.isIndObject_yoneda, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv, SSet.prodStdSimplex.objEquiv_map_apply, SSet.Subcomplex.le_iff_of_hasDimensionLT, CategoryTheory.ShortComplex.SnakeInput.op_L₃, topCatOpToFrm_obj_coe, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_inv_app_app, SSet.stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, SSet.Truncated.Edge.mk'_edge, SimplicialObject.Splitting.cofan_inj_comp_app, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_three, CategoryTheory.Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, AlgebraicGeometry.Scheme.eq_zeroLocus_of_isClosed_of_isAffine, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_Ο€_assoc, CategoryTheory.comp_app, LightProfinite.Extend.functorOp_map, CategoryTheory.Presieve.FamilyOfElements.map_apply, PresheafOfModules.sub_app, TopCat.Sheaf.interUnionPullbackConeLift_left, AlgebraicTopology.NormalizedMooreComplex.d_squared, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality_assoc, CategoryTheory.NatIso.unop_leftUnitor, CategoryTheory.Pretriangulated.Opposite.functor_isTriangulated_op, CategoryTheory.Functor.const.opObjOp_hom_app, HomotopicalAlgebra.cofibrations_eq_unop, AlgebraicGeometry.IsAffineOpen.comap_primeIdealOf_appLE, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.NatIso.unop_associator, CategoryTheory.Limits.coneOfCoconeRightOp_pt, TopCat.subpresheafToTypes_map_coe, CategoryTheory.MorphismProperty.RightFraction.op_map, CategoryTheory.ShortComplex.opcyclesOpIso_inv_naturality, AlgebraicGeometry.Scheme.Hom.appLE_appIso_inv_assoc, AlgebraicGeometry.Scheme.toSpecΞ“_image_zeroLocus, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.sβ‚€_comp_δ₁, CategoryTheory.toSheafification_app, SSet.nonDegenerate_iff_of_isIso, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_inv_app_assoc, AlgebraicGeometry.LocallyRingedSpace.evaluation_naturality, CategoryTheory.MorphismProperty.IsInvertedBy.op, Alexandrov.lowerCone_Ο€_app, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_of_le, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_fst, AlgebraicTopology.DoldKan.Ξ“β‚€.map_app, CategoryTheory.Limits.IndObjectPresentation.ofCocone_I, AlgebraicGeometry.PresheafedSpace.stalkMap_germ_apply, CategoryTheory.Limits.ΞΉ_comp_colimitRightOpIsoUnopLimit_hom, CategoryTheory.Comma.opFunctorCompSnd_hom_app, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, CategoryTheory.op_hom_associator, CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_of_projective, topToLocale_map, CategoryTheory.opOpEquivalence_unitIso, CategoryTheory.Limits.hasProducts_opposite, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Limits.widePushoutShapeOpEquiv_counitIso, CategoryTheory.Limits.instHasLimitDiscreteOppositeCompInverseOppositeOpFunctor, CategoryTheory.NatTrans.unop_id, AlgebraicGeometry.toSpecΞ“_SpecMap_Ξ“SpecIso_inv_assoc, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two_assoc, CategoryTheory.Equalizer.Presieve.w, CategoryTheory.Limits.coneLeftOpOfCocone_Ο€_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, AlgebraicGeometry.Scheme.homOfLE_app, AlgebraicGeometry.SheafedSpace.Ξ“_obj_op, CategoryTheory.HasSeparator.hasCoseparator_op, PresheafOfModules.Elements.fromFreeYoneda_app_apply, CategoryTheory.Equivalence.congrLeftFunctor_map, CategoryTheory.Functor.sheafPushforwardContinuousId_hom_app_val_app, CategoryTheory.Equalizer.Presieve.Arrows.compatible_iff_of_small, SSet.Truncated.comp_app_assoc, CategoryTheory.Coyoneda.colimitCocone_pt, CategoryTheory.unop_epi_iff, CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.image, SSet.Truncated.Edge.map_tensorHom, CategoryTheory.Subfunctor.sheafify_isSheaf, PresheafOfModules.pushforward_obj_obj, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.Limits.FormalCoproduct.cech_map, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_one, CategoryTheory.Join.inclLeftCompOpEquivInverse_inv_app_op, SSet.Truncated.StrictSegal.spineToSimplex_arrow, AlgebraicGeometry.Scheme.Modules.instIsIsoAbApp, AlgebraicGeometry.Scheme.Hom.naturality_assoc, CategoryTheory.Limits.hasLimit_rightOp_of_hasColimit, SSet.horn.edge₃_coe_down, SheafOfModules.Presentation.mapRelations_mapGenerators, AlgebraicGeometry.IsAffineOpen.fromSpec_app_self_apply, CategoryTheory.op_mono_iff, HomologicalComplex.cyclesOpIso_hom_naturality, TopCat.Presheaf.pushforward_map_app', AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply, SSet.Truncated.rightExtensionInclusion_left, CategoryTheory.op_hom_rightUnitor, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, SimplicialObject.Splitting.Οƒ_comp_Ο€Summand_id_eq_zero_assoc, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom, CondensedSet.topCatAdjunctionUnit_val_app, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, AlgebraicGeometry.eq_zero_of_basicOpen_eq_bot, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanMapIso_inv, AlgebraicGeometry.Scheme.homOfLE_appLE, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_self, CategoryTheory.Functor.sheafPushforwardContinuousId'_inv_app_val_app, preservesFilteredColimits_coyoneda, CategoryTheory.Adjunction.Triple.leftToRight_op, LightCondensed.hom_ext_iff, CategoryTheory.uliftYoneda_map_app, CategoryTheory.Yoneda.yoneda_full, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_carrier, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_ofArrows_iff, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, CategoryTheory.Iso.unop_inv, SSet.stdSimplex.const_down_toOrderHom, CategoryTheory.Functor.uliftYonedaReprXIso_hom_app, TopCat.Presheaf.pushforward_obj_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso, CategoryTheory.Limits.opProdIsoCoprod_hom_fst, SSet.Subcomplex.topIso_inv_ΞΉ_assoc, CategoryTheory.NatIso.op_leftUnitor, AlgebraicGeometry.Scheme.inv_appTop, CategoryTheory.ComposableArrows.opEquivalence_functor_obj_obj, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_X, AlgebraicGeometry.isLocalization_away_of_isAffine, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_iff, CategoryTheory.Adjunction.leftOp_counit, AlgebraicGeometry.Scheme.Hom.isIso_app, CategoryTheory.equivYoneda_hom_app, CategoryTheory.Presheaf.instIsCardinalPresentableFunctorOppositeTypeObjUliftYonedaOfHasColimitsOfSize, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₃, AlgebraicGeometry.Scheme.basicOpen_appLE, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, CategoryTheory.Limits.coend.map_comp, CategoryTheory.Limits.isLimitOfCoconeOfConeUnop_lift, CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation.compPresheafMap, SheafOfModules.relationsOfIsCokernelFree_I, CategoryTheory.Limits.walkingCospanOpEquiv_functor_map, CategoryTheory.Injective.instOppositeOpOfProjective, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_of_gt_assoc, CategoryTheory.NatTrans.coequifibered_op_iff, AlgebraicGeometry.instIsRightAdjointCommRingCatOppositeLocallyRingedSpaceΞ“, CategoryTheory.Equivalence.symmEquiv_counitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, CategoryTheory.Presieve.FamilyOfElements.compPresheafMap_comp, CategoryTheory.Limits.pushoutIsoOpPullback_inr_hom, CategoryTheory.Coyoneda.isIso, CategoryTheory.Functor.const.opObjOp_inv_app, AlgebraicGeometry.structureSheafInType.add_apply, CategoryTheory.Presheaf.isLocallyInjective_comp_iff, CategoryTheory.Functor.CorepresentableBy.equivUliftCoyonedaIso_symm_apply_homEquiv, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_Ξ΄_assoc, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj, CategoryTheory.Limits.has_cofiltered_limits_op_of_has_filtered_colimits, CategoryTheory.ObjectProperty.IsDetecting.isIso_iff_of_mono, SSet.Subcomplex.fromPreimage_app_coe, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, AlgebraicTopology.DoldKan.MorphComponents.preComp_Ο†, SSet.horn_eq_iSup, AlgebraicGeometry.morphismRestrict_appTop, AlgebraicGeometry.Scheme.IdealSheafData.ofIdealTop_ideal, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso_unop, CategoryTheory.ShortComplex.LeftHomologyData.op_p, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο€, CategoryTheory.Limits.piConst_obj_obj, AlgebraicTopology.DoldKan.Ξ“β‚€_obj_obj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, LightCondensed.underlying_obj, CategoryTheory.Presieve.IsSheafFor.functorInclusion_comp_extend, CategoryTheory.Square.op_Xβ‚‚, CategoryTheory.Equivalence.op_functor, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, AlgebraicTopology.DoldKan.Q_f_naturality_assoc, CategoryTheory.Limits.preservesColimitsOfSize_leftOp, TopCat.Presheaf.stalkPushforward_germ, SSet.Truncated.spine_vertex, CategoryTheory.instFinallySmallOppositeOfInitiallySmall, CategoryTheory.yonedaMap_app_apply, CategoryTheory.Limits.BinaryCofan.op_mk, CategoryTheory.Sheaf.Ξ“HomEquiv_naturality_right_symm, AlgebraicGeometry.SheafedSpace.comp_hom_c_app', CategoryTheory.Functor.IsCoverDense.Types.naturality_apply, SSet.stdSimplex.objβ‚€Equiv_symm_mem_face_iff, SimplicialObject.opFunctorCompOpFunctorIso_hom_app_app, CategoryTheory.Equivalence.sheafCongr.functor_obj_val_map, SSet.range_eq_iSup_sigma_ΞΉ, SSet.Subcomplex.BicartSq.isPushout, CategoryTheory.forgetEnrichmentOppositeEquivalence_inverse, AlgebraicGeometry.Ξ“SpecIso_hom_stalkClosedPointIso_inv, germ_skyscraperPresheafStalkOfSpecializes_hom_assoc, CategoryTheory.NatTrans.rightOpWhiskerRight_assoc, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_apply, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_Ο€_app, SSet.Subcomplex.PairingCore.nonDegenerateβ‚‚, CategoryTheory.Sheaf.coneΞ“_Ο€_app, CategoryTheory.SimplicialObject.Truncated.trunc_map_app, SSet.stdSimplex.objEquiv_symm_comp, CategoryTheory.SimplicialObject.Augmented.wβ‚€_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_basicOpen, CategoryTheory.ShortComplex.HomologyData.op_left, TopCat.Presheaf.germ_stalkPullbackHom_assoc, CategoryTheory.PresheafOfGroups.OneCochain.ev_precomp, CategoryTheory.Limits.FormalCoproduct.instPreservesLimitOppositeDiscreteFunctorCompOpObjFunctorEvalOp, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, AlgebraicGeometry.LocallyRingedSpace.Ξ“_map, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_inv_app_val_app, AlgebraicGeometry.Flat.flat_of_affine_subset, AlgebraicGeometry.isCompactOpen_iff_eq_basicOpen_union, TopCat.Presheaf.presheafEquivOfIso_functor_obj_obj, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_obj, AlgebraicGeometry.AffineSpace.functor_obj_obj, CategoryTheory.SimplicialObject.whiskering_obj_obj_obj, CategoryTheory.Functor.IsRepresentedBy.uliftYonedaIso_hom, CategoryTheory.Limits.end_.map_comp, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_Οƒ_assoc, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_pt, CategoryTheory.Sheaf.Ξ“Res_map, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self, AlgebraicGeometry.Spec.algebraMap_stalkIso_inv, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanIndex_right, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinset_map_app, CategoryTheory.Idempotents.DoldKan.Ξ“_obj_map, CategoryTheory.Functor.const.unop_functor_op_obj_map, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.Functor.leftOpComp_inv_app, CategoryTheory.Functor.instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined, CategoryTheory.MonObj.ofRepresentableBy_mul, CategoryTheory.Comma.opFunctorCompFst_hom_app, LightCondSet.hom_naturality_apply, PresheafOfModules.instAdditiveModuleCatCarrierObjOppositeRingCatEvaluation, SSet.Truncated.mapHomotopyCategory_obj, CategoryTheory.ShortComplex.homologyOpIso_inv_naturality_assoc, CategoryTheory.monoidalOpOp_Ξ΅, AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ_apply, CategoryTheory.regularTopology.equalizerCondition_w', CommAlgCat.toUnit_unop_hom, CommGrpCat.coyonedaForget_hom_app_app_hom, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv', CategoryTheory.Limits.preservesFiniteProducts_rightOp, AlgebraicGeometry.HasAffineProperty.affineAnd_iff, CategoryTheory.Limits.limitCompYonedaIsoCocone_inv, PresheafOfModules.Hom.naturality_assoc, CategoryTheory.nerve_map, AlgebraicGeometry.IsOpenImmersion.app_eq_appIso_inv_app_of_comp_eq, CategoryTheory.Limits.Fork.op_ΞΉ_app, AlgebraicGeometry.AffineSpace.functor_map_app, CategoryTheory.hasCoseparator_op_iff, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.c_iso, AlgebraicGeometry.Scheme.IdealSheafData.ker_subschemeΞΉ_app, AlgebraicGeometry.IsOpenImmersion.Ξ“Iso_inv, AlgebraicGeometry.Scheme.Modules.Hom.sub_app, CategoryTheory.RelCat.opEquivalence_counitIso, CategoryTheory.ShortComplex.rightHomologyMap_op, SSet.Truncated.Edge.map_edge, CategoryTheory.instFullGrpFunctorOppositeGrpCatYonedaGrp, AlgebraicGeometry.LocallyRingedSpace.restrict_presheaf_map, AlgebraicGeometry.AffineScheme.Spec_essSurj, CategoryTheory.coyonedaEquiv_coyoneda_map, CategoryTheory.CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, CategoryTheory.ShortComplex.Homotopy.op_h₃, CategoryTheory.Presheaf.imageSieve_eq_sieveOfSection, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_homβ‚‚, AlgebraicGeometry.Ξ“Spec.adjunction_homEquiv_apply, CategoryTheory.Equivalence.rightOp_functor_obj, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerRight_val, AlgebraicGeometry.Proj.add_apply, CategoryTheory.sheafifyMap_comp, AlgebraicGeometry.PresheafedSpace.Ξ“_obj, CategoryTheory.Limits.coneOfSectionCompYoneda_Ο€, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, CategoryTheory.Functor.instFaithfulOppositeTypeRestrictedULiftYonedaOfIsDense, CategoryTheory.op_add, CategoryTheory.Comma.opFunctorCompFst_inv_app, CategoryTheory.Limits.isIndObject_iff_preservesFiniteLimits, CategoryTheory.Functor.IsRightAdjoint.leftOp, CategoryTheory.Limits.coend.ΞΉ_map, CategoryTheory.isCodetector_op_iff, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, SSet.skeletonOfMono_zero, AlgebraicGeometry.Scheme.Hom.ΞΉ_toNormalization_assoc, CategoryTheory.Pseudofunctor.toDescentData_obj, CommRingCat.equalizer_ΞΉ_isLocalHom', HomotopicalAlgebra.trivialFibrations_eq_unop, CategoryTheory.Presheaf.isStrongGenerator, CategoryTheory.Abelian.instAdditiveOppositeFunctorAddCommGrpCatExtFunctor, SSet.Truncated.Edge.id_edge, CategoryTheory.Limits.coconeUnopOfCone_pt, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map_assoc, CategoryTheory.SimplicialObject.Ξ΄_naturality_assoc, CategoryTheory.simplicialCosimplicialEquiv_inverse_obj, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inl, CategoryTheory.ShortComplex.Homotopy.unop_h₁, CategoryTheory.Comma.unopFunctor_map, CategoryTheory.Limits.walkingCospanOpEquiv_functor_obj, TopCat.Presheaf.germ_stalkPullbackInv, CategoryTheory.Limits.IndObjectPresentation.ofCocone_isColimit, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, instPreservesFiniteProductsOppositeYonedaPresheafOfPreservesFiniteCoproductsTopCat, CategoryTheory.ShortComplex.quasiIso_opMap, CategoryTheory.Limits.hasLimits_op_of_hasColimits, CondensedSet.isDiscrete_tfae, CategoryTheory.Idempotents.DoldKan.Ξ“_obj_obj, CategoryTheory.Equivalence.precoherent_isSheaf_iff, SSet.horn₃₂.desc.multicofork_Ο€_zero_assoc, CategoryTheory.linearCoyoneda_obj_map, CategoryTheory.Equivalence.symmEquiv_unitIso, CategoryTheory.ShortComplex.SnakeInput.op_v₂₃, AlgebraicGeometry.Scheme.Hom.fromNormalization_app_assoc, AlgebraicGeometry.Scheme.isoSpec_inv_toSpecΞ“_assoc, CategoryTheory.simplicialCosimplicialEquiv_functor_map_app, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_hom_app_app, CategoryTheory.OverPresheafAux.restrictedYonedaObj_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, CategoryTheory.OverPresheafAux.MakesOverArrow.app, ContinuousMap.piComparison_fac, CategoryTheory.Limits.isColimitOfConeLeftOpOfCocone_desc, CategoryTheory.Limits.walkingSpanOpEquiv_functor_map, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_apply, AlgebraicGeometry.Scheme.IdealSheafData.ideal_iInf, AlgebraicGeometry.IsAffineOpen.primeIdealOf_eq_map_closedPoint, CategoryTheory.Limits.unop_zero, CategoryTheory.Limits.hasCoproductsOfShape_opposite, CategoryTheory.Square.unop_fβ‚‚β‚„, CategoryTheory.ShortComplex.SnakeInput.op_v₀₁, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_succ, PresheafOfModules.comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom, SSet.IsStrictSegal.segal, CategoryTheory.Limits.coneRightOpOfCocone_pt, CategoryTheory.ShortComplex.rightHomologyFunctorOpNatIso_hom_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, CategoryTheory.OverPresheafAux.OverArrows.app_val, AlgebraicGeometry.Scheme.stalkMap_germ_apply, AlgebraicGeometry.Scheme.IdealSheafData.range_glueDataObjΞΉ, CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_singleton_iff, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.IsDetecting.isIso_iff_of_mono, CategoryTheory.Functor.opHom_obj, AlgebraicTopology.NormalizedMooreComplex.map_f, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.Scheme.Hom.instIsIsoCommRingCatAppObjOpensOpensFunctor, CategoryTheory.yonedaCommGrpGrpObj_obj_coe, CategoryTheory.ShortComplex.opEquiv_inverse, CategoryTheory.Subfunctor.range_eq_ofSection, CategoryTheory.orderDualEquivalence_counitIso, CategoryTheory.linearYoneda_obj_additive, CategoryTheory.Iso.unop_hom_inv_id_app_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, CategoryTheory.CommSq.op, AlgebraicGeometry.Scheme.Modules.pushforwardId_hom_app_app, CommAlgCat.one_op_of_unop_hom, AlgebraicGeometry.Scheme.Hom.germ_stalkMap, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, PresheafOfModules.restriction_app, CategoryTheory.ShiftedHom.opEquiv_symm_apply_comp, CategoryTheory.yonedaPairing_map, AlgebraicGeometry.Scheme.coprodPresheafObjIso_hom_fst, CategoryTheory.Limits.preservesLimits_op, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, AlgebraicGeometry.Scheme.toOpen_eq, CategoryTheory.NatTrans.Coequifibered.op, CategoryTheory.Limits.has_filtered_colimits_op_of_has_cofiltered_limits, PresheafOfModules.ΞΉ_fromFreeYonedaCoproduct_apply, CategoryTheory.Limits.hasColimit_of_hasLimit_unop, SSet.Augmented.stdSimplex_obj_hom_app, AlgebraicGeometry.Spec.toSheafedSpace_map, CategoryTheory.ShortComplex.RightHomologyData.unop_K, CategoryTheory.Functor.rightOpComp_inv_app, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, TopCat.Presheaf.map_restrict, CategoryTheory.Adjunction.rightOp_unit, AlgebraicGeometry.Scheme.Modules.restrict_obj, CategoryTheory.SimplicialObject.whiskering_obj_obj_map, CategoryTheory.ObjectProperty.colimitsClosure_eq_unop_limitsClosure, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, CategoryTheory.uliftYoneda_map_app_down, CategoryTheory.orderDualEquivalence_functor_obj, CategoryTheory.Comma.opEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, LightProfinite.instPreservesLimitsOfShapeOppositeNatForgetContinuousMapCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, CategoryTheory.Functor.opId_inv_app, AlgebraicGeometry.IsOpenImmersion.app_Ξ“Iso_hom_assoc, CategoryTheory.isoOpEquiv_symm_apply, SimplicialObject.Splitting.decomposition_id, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf, SSet.Truncated.Path.arrow_src, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, SSet.spine_map_vertex, CategoryTheory.Limits.coneLeftOpOfCocone_pt, CategoryTheory.Limits.FormalCoproduct.evalOpCompInlIsoId_hom_app_app, PresheafOfModules.free_obj, CategoryTheory.Functor.IsCoverDense.presheafIso_inv, CategoryTheory.Limits.widePullbackShapeUnop_obj, CategoryTheory.Functor.RepresentableBy.ext_iff, CategoryTheory.GrothendieckTopology.yoneda_obj_val, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_naturality, CategoryTheory.Functor.const.opObjUnop_inv_app, CategoryTheory.Limits.walkingParallelPairOp_zero, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_Ο€_0, CategoryTheory.flat_iff_lan_flat, CategoryTheory.IndParallelPairPresentation.hg, CategoryTheory.ShortComplex.LeftHomologyData.unop_H, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_inv_val, CategoryTheory.Equivalence.rightOp_counitIso_hom_app, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_obj, AlgebraicGeometry.Scheme.Modules.restrictAdjunction_unit_app_app, CategoryTheory.Sheaf.instPreservesFiniteLimitsFunctorOppositeSheafToPresheafOfHasFiniteLimits, CategoryTheory.yonedaPairingExt_iff, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_homEquiv_apply, CategoryTheory.op_sum, CategoryTheory.OverPresheafAux.app_unitForward, AlgebraicGeometry.StructureSheaf.comapβ‚—_const, CategoryTheory.isCoseparator_iff_faithful_yoneda_obj, AlgebraicTopology.DoldKan.MorphComponents.postComp_b, CategoryTheory.instPresheafIsFiniteObjFunctorOppositeTypeYoneda, CategoryTheory.Limits.BinaryCofan.unop_mk, TopCat.Presheaf.restrictOpenCommRingCat_apply, CategoryTheory.unop_rightUnitor, CategoryTheory.Comma.opEquiv_unitIso, SSet.hasDimensionLT_iSup_iff, AlgebraicGeometry.Scheme.Hom.isIntegral_app, CategoryTheory.ObjectProperty.instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality, CategoryTheory.ShortComplex.Splitting.op_s, CategoryTheory.sheafificationAdjunction_unit_app, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, CategoryTheory.Limits.Fork.op_ΞΉ_app_one, CategoryTheory.CategoryOfElements.toCostructuredArrow_obj, CategoryTheory.OverPresheafAux.yonedaCollectionFunctor_map, CategoryTheory.preadditiveYonedaObj_obj_isAddCommGroup, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp_map_assoc, CategoryTheory.ShiftedHom.opEquiv'_symm_add, AlgebraicGeometry.Ξ“SpecIso_inv_Ξ“Spec_adjunction_homEquiv, CategoryTheory.Functor.opUnopEquiv_unitIso, SSet.Subcomplex.le_iff_contains_nonDegenerate, CategoryTheory.LocalizerMorphism.op_functor, CategoryTheory.isCodetecting_op_iff, AlgebraicGeometry.RingedSpace.zeroLocus_empty_eq_univ, CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf, CategoryTheory.unop_inv, AlgebraicGeometry.StructureSheaf.algebraMap_germ_assoc, TopCat.Presheaf.SubmonoidPresheaf.toLocalizationPresheaf_app, AlgebraicGeometry.StructureSheaf.res_apply, CategoryTheory.OverPresheafAux.YonedaCollection.mk_snd, CategoryTheory.Limits.hasColimit_leftOp_of_hasLimit, CategoryTheory.Functor.mapPresheaf_map_c, CategoryTheory.lan_flat_of_flat, AlgebraicGeometry.Scheme.Modules.Hom.add_app, CategoryTheory.Presieve.Arrows.toCompatible_coe, SSet.stdSimplex.yonedaEquiv_map, CategoryTheory.LocalizerMorphism.nonempty_leftResolution_iff_op, CategoryTheory.Join.inclLeftCompOpEquivInverse_hom_app_op, CategoryTheory.Presheaf.coconeOfRepresentable_naturality, PresheafOfModules.Derivation.d_app, CategoryTheory.instFaithfulSheafFunctorOppositeCompSheafComposeSheafToPresheaf, CategoryTheory.NatIso.op_refl, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.Limits.PullbackCone.op_inl, CategoryTheory.NatTrans.rightOp_app, CategoryTheory.Presheaf.instPreservesFiniteProductsOppositeVal, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, CategoryTheory.Adjunction.compCoyonedaIso_hom_app_app, SSet.horn_obj_zero, CategoryTheory.Iso.op_refl, InfiniteGalois.toAlgEquivAux_eq_liftNormal, CategoryTheory.Functor.closedIhom_map_app, AlgebraicTopology.DoldKan.hΟƒ'_eq, CategoryTheory.NatTrans.equifibered_unop_iff, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, CategoryTheory.Cat.opFunctorInvolutive_inv_app_toFunctor_obj, LightCondMod.hom_naturality_apply, CategoryTheory.SimplicialObject.eqToIso_refl, AlgebraicGeometry.toSpecΞ“_SpecMap_Ξ“SpecIso_inv, PresheafOfModules.forgetToPresheafModuleCat_obj, SSet.mem_skeleton, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv', AlgebraicGeometry.IsOpenImmersion.map_Ξ“Iso_inv, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, CategoryTheory.NatTrans.leftOpWhiskerRight, CategoryTheory.Limits.limitCompCoyonedaIsoCone_inv, CategoryTheory.Limits.Cofork.unop_Ο€_app_zero, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΞ“UnitOpensCarrierCarrierCommRingCatRingCatSheaf, AlgebraicTopology.DoldKan.MorphComponents.id_a, PresheafOfModules.forgetToPresheafModuleCatObj_obj, CategoryTheory.ShiftedHom.opEquiv'_zero_add_symm, AlgebraicGeometry.Scheme.Hom.map_appLE', AlgebraicGeometry.LocallyRingedSpace.GlueData.ΞΉ_isoSheafedSpace_inv_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl_assoc, AlgebraicGeometry.RingedSpace.basicOpen_mul, CategoryTheory.GrothendieckTopology.Point.instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits, PresheafOfModules.Finite.toPresheaf_preservesFiniteColimits, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Limits.preservesFiniteLimits_of_isFiltered_costructuredArrow_yoneda, SSet.horn.spineId_vertex_coe, AlgebraicGeometry.Scheme.Hom.inv_appTop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionRight_op, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, CategoryTheory.Presieve.FamilyOfElements.Compatible.functorPullback, SSet.rightUnitor_hom_app_apply, SSet.iSup_skeletonOfMono, CategoryTheory.Presheaf.imageSieve_whisker_forget, CategoryTheory.ShortComplex.opFunctor_obj, CategoryTheory.full_preadditiveYoneda, CategoryTheory.Pretriangulated.Opposite.distinguished_cocone_triangle, AddCommMonCat.coyonedaForget_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply, CategoryTheory.instIsMonoidalOppositeOpOpEquivalence, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_invApp_assoc, CategoryTheory.Functor.IsCoverDense.sheafIso_inv_val, CategoryTheory.Square.IsPullback.op, localCohomology.ideal_powers_initial, CategoryTheory.Functor.IsRepresentedBy.map_bijective, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.c_iso', AlgebraicGeometry.Flat.flat_appLE, AlgebraicGeometry.isIntegralHom_iff, AlgebraicGeometry.SheafedSpace.GlueData.ΞΉIsOpenImmersion, CategoryTheory.sectionsFunctorNatIsoCoyoneda_hom_app_app, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Limits.preservesFiniteColimits_of_unop, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_snd, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_Ξ΅_assoc, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, CommGrpCat.coyoneda_obj_obj_coe, CategoryTheory.presheafToSheaf_additive, CategoryTheory.Functor.representableByUliftFunctorEquiv_apply_homEquiv, CategoryTheory.Functor.shift_map_op, AlgebraicGeometry.RingedSpace.basicOpen_res_eq, LightCondensed.ihomPoints_symm_apply, CategoryTheory.sheafificationIso_hom_val, AlgebraicGeometry.Spec_zeroLocus, AlgebraicGeometry.LocallyOfFinitePresentation.finitePresentation_appLE, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Functor.CorepresentableBy.equivUliftCoyonedaIso_apply, CategoryTheory.nerve_obj, AlgebraicGeometry.Scheme.basicOpen_mul, LightCondensed.discrete_obj, CategoryTheory.Limits.ΞΉ_comp_colimitOpIsoOpLimit_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom_op, CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible.section_apply, SSet.Truncated.tensor_map_apply_fst, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv_naturality, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_eq_eq_iInter_zeroLocus, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_apply_app, PresheafOfModules.Monoidal.tensorHom_app, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_obj, CategoryTheory.Pretriangulated.shiftFunctor_op_map, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_Ο€, AlgebraicTopology.DoldKan.PInfty_f_naturality, AlgebraicGeometry.exists_of_res_eq_of_qcqs_of_top, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map, CategoryTheory.ShortComplex.RightHomologyData.op_f', CategoryTheory.RelCat.opEquivalence_inverse, CategoryTheory.Limits.hasTerminal_op_of_hasInitial, CategoryTheory.Limits.preservesLimit_of_leftOp, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.map_on_summand, CategoryTheory.Sieve.uliftFunctorInclusion_is_mono, SSet.horn.spineId_arrow_coe, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, AlgebraicGeometry.Scheme.Hom.finiteType_appLE, CategoryTheory.rightDualFunctor_obj, CategoryTheory.Functor.isRepresentable_comp_uliftFunctor_iff, SSet.skeletonOfMono_obj_eq_top, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, CategoryTheory.uliftCoyonedaEquiv_naturality, CategoryTheory.Presheaf.isSheaf_iff_isSheaf_comp, AlgebraicTopology.DoldKan.HigherFacesVanish.of_comp, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, SimplicialObject.opFunctorCompOpFunctorIso_inv_app_app, CategoryTheory.instInitiallySmallOppositeOfFinallySmall, CategoryTheory.Limits.opProdIsoCoprod_hom_fst_assoc, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο€_assoc, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app, CategoryTheory.op_inv_rightUnitor, CategoryTheory.OverPresheafAux.YonedaCollection.map₁_comp, CategoryTheory.Limits.isLimitConeLeftOpOfCocone_lift, CategoryTheory.Sheaf.isLocallyInjective_sheafToPresheaf_map_iff, PresheafOfModules.pullbackObjIsDefined_free_yoneda, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.HasCoseparator.hasSeparator_op, CategoryTheory.cokernelUnopUnop_hom, CategoryTheory.Sheaf.id_val, CategoryTheory.sheafComposeIso_inv_fac_assoc, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, AlgebraicGeometry.Scheme.zeroLocus_biInf_of_nonempty, SSet.iSup_range_eq_top_of_isColimit, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, CategoryTheory.SimplicialObject.IsCoskeletal.isRightKanExtension, CategoryTheory.Functor.IsCoverDense.sheafCoyonedaHom_app, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, SSet.stdSimplex.objEquiv_toOrderHom_apply, PresheafOfModules.toPresheaf_preservesColimitsOfShape, CategoryTheory.GrothendieckTopology.Point.instHasColimitsOfShapeOppositeElementsFiber, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left, AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom_assoc, CategoryTheory.DinatTrans.precompNatTrans_app, TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_Ξ΄β‚€, AlgebraicGeometry.Scheme.SpecΞ“Identity_inv_app, SSet.const_comp, PresheafOfModules.instMonoModuleCatCarrierObjOppositeRingCatApp, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.const_s, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_base, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, CategoryTheory.opOpEquivalence_counitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, CategoryTheory.isoSheafify_inv, HomotopicalAlgebra.instCofibrationOppositeOpOfFibration, CategoryTheory.Limits.limit.homIso_hom, Profinite.Extend.functorOp_final, TopCat.Presheaf.isSheaf_iff_isSheaf_comp', AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AlgebraicGeometry.StructureSheaf.algebraMap_germ, AlgebraicGeometry.IsOpenImmersion.app_Ξ“Iso_hom, AlgebraicGeometry.preservesLimit_rightOp_Ξ“, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app, SSet.horn₃₁.desc.multicofork_Ο€_three_assoc, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_unit, PresheafOfModules.Derivation'.app_apply, CategoryTheory.uliftYonedaIsoYoneda_hom_app_app, CategoryTheory.IsCodetecting.isIso_iff_of_epi, CategoryTheory.RetractArrow.op_r_left, CategoryTheory.hasDetector_op_iff, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right, CategoryTheory.Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, SSet.Truncated.Edge.tensor_edge, AlgebraicGeometry.isLocallyNoetherian_iff_of_iSup_eq_top, CategoryTheory.Limits.isLimitConeOfCoconeLeftOp_lift, CategoryTheory.GrothendieckTopology.diagramFunctor_map, CategoryTheory.isSeparator_op_iff, SSet.Edge.map_edge, CategoryTheory.equivYoneda_inv_app, CategoryTheory.uliftCoyonedaEquiv_symm_map_assoc, AlgebraicGeometry.StructureSheaf.instIsLocalizedModuleCarrierStalkAbPresheafOpensCarrierTopModuleStructurePresheafPrimeComplAsIdealToStalkβ‚—, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, SSet.Edge.CompStruct.map_simplex, CategoryTheory.Pretriangulated.commShiftIso_opOp_hom_app, CategoryTheory.presheafToSheafCompComposeAndSheafifyIso_inv_app, CommMonCat.coyoneda_map_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso, AlgebraicGeometry.basicOpen_eq_of_affine', CategoryTheory.Limits.preservesFiniteLimits_rightOp, CategoryTheory.unop_inv_braiding, CategoryTheory.ObjectProperty.isCoseparating_unop_iff, CategoryTheory.op_inv, SSet.Truncated.Path.map_vertex, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_hom_app_homβ‚‚, CategoryTheory.Comma.unopFunctorCompFst_inv_app, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_restriction, CategoryTheory.HasLiftingProperty.iff_op, CategoryTheory.Presieve.FamilyOfElements.comp_of_compatible, AlgebraicGeometry.Scheme.Opens.fromSpecStalkOfMem_toSpecΞ“, SSet.PtSimplex.MulStruct.Ξ΄_castSucc_castSucc_map_assoc, CategoryTheory.yoneda'_obj_val, CategoryTheory.Limits.IndObjectPresentation.extend_isColimit_desc_app, CategoryTheory.Limits.IndObjectPresentation.ofCocone_ΞΉ, CategoryTheory.Limits.opProdIsoCoprod_inv_inr, AlgebraicGeometry.Spec.coe_toTop_map_hom_apply_asIdeal, AlgebraicGeometry.Scheme.Opens.toScheme_presheaf_map, CategoryTheory.ShortComplex.leftHomologyFunctorOpNatIso_hom_app, AddCommMonCat.coyonedaType_obj_obj_coe, CategoryTheory.Subfunctor.Subpresheaf.image_isFinite, SSet.horn₃₁.desc.multicofork_Ο€_zero, CategoryTheory.hasCardinalLT_arrow_op_iff, CategoryTheory.orderDualEquivalence_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_obj_base, AlgebraicGeometry.instIsDominantToSpecΞ“OfCompactSpaceCarrierCarrierCommRingCat, CategoryTheory.ObjectProperty.isCodetecting_unop_iff, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_Ο†H, CategoryTheory.Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, LightCondensed.lanPresheafNatIso_hom_app, CategoryTheory.Limits.widePullbackShapeOpEquiv_functor, SSet.mem_nonDegenerate_iff_notMem_degenerate, CategoryTheory.Limits.pushoutIsoOpPullback_inl_hom_assoc, CategoryTheory.Subfunctor.mem_ofSection_obj, smoothSheafCommRing.ΞΉ_forgetStalk_hom_apply, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, SSet.finite_subcomplex_top_iff, AlgebraicGeometry.stalkToFiberRingHom_germ, SSet.Truncated.StrictSegal.spine_Ξ΄_arrow_eq, AlgebraicGeometry.StructureSheaf.const_mul_cancel', AlgebraicGeometry.Scheme.isoSpec_Spec_inv, CategoryTheory.Functor.IsCoverDense.homOver_app, CategoryTheory.Groupoid.invEquivalence_functor_obj, AlgebraicGeometry.Scheme.IdealSheafData.supportSet_subset_zeroLocus, SSet.Subcomplex.preimage_max, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, AlgebraicGeometry.instFaithfulOppositeCommRingCatLocallyRingedSpaceToLocallyRingedSpace, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_w_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionRight_unop, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom, SSet.Subcomplex.mem_ofSimplex_obj, CategoryTheory.Limits.hasLimit_of_hasColimit_unop, CategoryTheory.OverPresheafAux.unitForward_unitBackward, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomRight, CategoryTheory.FunctorToTypes.rightAdj_obj_map_app, CategoryTheory.imageUnopOp_hom_comp_image_ΞΉ, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_of_gt', TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, AlgebraicGeometry.IsFinite.finite_app, CategoryTheory.Limits.isColimitCoconeRightOpOfCone_desc, HomologicalComplex.instQuasiIsoOppositeMapSymmOpFunctorOp, CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ΞΉ_assoc, CategoryTheory.Limits.isColimitCoconeOfConeRightOp_desc, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct_hom, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_obj_val_map, CategoryTheory.Adjunction.Quadruple.op_adj₁, lightCondSetToTopCat_obj_carrier, SSet.Subcomplex.image_le_range, CategoryTheory.ShortComplex.Exact.op, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_hom_app_val_app, AlgebraicGeometry.instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensOfIsEmpty, AlgebraicGeometry.exists_eq_pow_mul_of_isAffineOpen, CategoryTheory.GrothendieckTopology.instIsLocalizationFunctorOppositeSheafPresheafToSheafW, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_obj_map, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.NatIso.removeOp_inv, smoothSheafCommRing.ΞΉ_forgetStalk_hom_assoc, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_assoc, CategoryTheory.MorphismProperty.ContainsIdentities.op, AlgebraicGeometry.Proj.awayMap_awayToSection, CategoryTheory.Groupoid.invEquivalence_counitIso, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, CategoryTheory.HasLiftingProperty.iff_unop, AlgebraicGeometry.instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscretePEmptySpec, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, AlgebraicGeometry.finite_appTop_of_universallyClosed, CategoryTheory.Square.opFunctor_map_τ₃, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.isCoseparating_unop_iff, AlgebraicGeometry.IsLocallyNoetherian.component_noetherian, CategoryTheory.GrothendieckTopology.Point.instPreservesFiniteLimitsFunctorOppositePresheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize, CategoryTheory.Join.opEquiv_inverse_map_edge_op, CategoryTheory.Coyoneda.instHasColimitObjOppositeFunctorTypeCoyoneda, CategoryTheory.Presheaf.instIsCardinalLocallyPresentableFunctorOppositeOfHasPullbacks, CategoryTheory.Functor.IsCoverDense.Types.presheafIso_hom_app, CategoryTheory.Limits.coconeLeftOpOfCone_ΞΉ_app, CategoryTheory.MorphismProperty.RightFraction.unop_f, CategoryTheory.Limits.Ο€_comp_colimitRightOpIsoUnopLimit_inv, CategoryTheory.Limits.ΞΉ_comp_colimitUnopIsoOpLimit_hom_assoc, CategoryTheory.isCoseparator_iff_faithful_preadditiveYonedaObj, CategoryTheory.yonedaGrpObj_obj_coe, CategoryTheory.LocalizerMorphism.RightResolution.unop_w, CategoryTheory.GrothendieckTopology.diagramFunctor_obj, AlgebraicTopology.DoldKan.Nβ‚‚_obj_p_f, CategoryTheory.NatTrans.leftOpWhiskerRight_assoc, CategoryTheory.Functor.leftOpComp_hom_app, SSet.Truncated.HomotopyCategory.BinaryProduct.square, AlgebraicGeometry.IsIntegralHom.integral_app, CategoryTheory.Limits.preservesLimit_op, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, CategoryTheory.Subfunctor.ofSection_image, CategoryTheory.Limits.preservesColimit_of_leftOp, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, AlgebraicGeometry.isIso_SpecMap_stakMap_localization, CategoryTheory.Limits.coend.hom_ext_iff, CategoryTheory.Functor.sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft, CommMonCat.coyoneda_obj_obj_coe, CategoryTheory.Functor.instIsCorepresentableObjOppositeTypeCoyoneda, CommRingCat.coyonedaUnique_inv_app_hom_apply, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, LightProfinite.Extend.cocone_pt, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, CategoryTheory.GrothendieckTopology.HasSheafCompose.isSheaf, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_pt, AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit_map, SSet.stdSimplex.ofSimplex_yonedaEquiv_Ξ΄, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_assoc, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_id, AlgebraicTopology.DoldKan.Οƒ_comp_PInfty, CategoryTheory.Limits.preservesFiniteCoproducts_op, TopCat.Presheaf.SheafConditionEqualizerProducts.w_apply, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, AlgebraicGeometry.specTargetImageFactorization_app_injective, LightCondensed.ihom_map_val_app, AlgebraicGeometry.Scheme.IsGermInjectiveAt.cond, CategoryTheory.sheafToPresheaf_Ξ·, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk, AlgebraicGeometry.Scheme.IdealSheafData.zeroLocus_inter_subset_supportSet, CategoryTheory.Presheaf.isLocallySurjective_toPlus, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanIndex_fst, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one, AlgebraicGeometry.PresheafedSpace.Ξ“_map, CategoryTheory.Limits.coconeRightOpOfCone_ΞΉ, AlgebraicTopology.NormalizedMooreComplex.obj_X, SSet.mem_skeletonOfMono_obj_iff_of_nonDegenerate, AlgebraicGeometry.Ξ“Spec.right_triangle, CategoryTheory.ObjectProperty.instEssentiallySmallOppositeOp, CategoryTheory.Subfunctor.range_isFinite, TopologicalSpace.Opens.op_map_comp_obj, AlgebraicGeometry.SheafedSpace.id_c_app, TopCat.Presheaf.app_isIso_of_stalkFunctor_map_iso, SSet.Truncated.Path₁.arrow_tgt, CategoryTheory.Square.op_f₁₃, CategoryTheory.Iso.unop_hom, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal', CompHausLike.LocallyConstant.instIsIsoFunctorTypeUnitSheafCoherentTopologyAdjunction, CategoryTheory.NatTrans.coequifibered_unop_iff, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_of_eq, AlgebraicGeometry.StructureSheaf.toOpenβ‚—_top_bijective, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj_unop, AlgebraicGeometry.StructureSheaf.comap_id_eq_map, CategoryTheory.MonoidalClosed.internalHom_map, AlgebraicGeometry.Scheme.Hom.appIso_hom, HomotopicalAlgebra.fibrations_op, CategoryTheory.Limits.opProdIsoCoprod_hom_snd, CategoryTheory.Presieve.isSheafFor_arrows_iff_pullbacks, CategoryTheory.toSheafify_sheafifyLift, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, SSet.S.equivElements_apply_snd, CategoryTheory.ShortComplex.shortExact_iff_unop, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_self_assoc, CategoryTheory.ShiftedHom.opEquiv'_symm_comp, CategoryTheory.Functor.closedSieves_map_coe, CategoryTheory.Functor.unopComp_inv_app, AlgebraicTopology.NormalizedMooreComplex.objX_add_one, AlgebraicTopology.DoldKan.Nβ‚‚_obj_X_X, CategoryTheory.Limits.multicospanIndexEnd_left, SimplicialObject.Split.Hom.comm_assoc, CategoryTheory.TwoSquare.instGuitartExactOppositeOp, SSet.HasDimensionLT.degenerate_eq_top, CategoryTheory.Sieve.functorInclusion_top_isIso, CategoryTheory.Limits.PullbackCone.unop_pt, CategoryTheory.Subpresheaf.sheafify_isSheaf, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_Ο€_succ, CategoryTheory.simplicialToCosimplicialAugmented_obj, AlgebraicGeometry.IsOpenImmersion.app_Ξ“Iso_hom_apply, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom, CategoryTheory.Functor.PullbackObjObj.Ο€_snd_assoc, InfiniteGalois.finGaloisGroupFunctor_map_proj_eq_proj, HomologicalComplex.isSupported_op_iff, CategoryTheory.Presheaf.instIsLocallySurjectiveHomToRangeSheafify, SSet.prodStdSimplex.nonDegenerate_iff_injective_objEquiv, CategoryTheory.MonoidalClosed.internalHom_obj, CategoryTheory.Functor.opComp_hom_app, CategoryTheory.ShortComplex.unop_g, AlgebraicGeometry.Scheme.IdealSheafData.ideal_sup, CategoryTheory.cokernelOpUnop_hom, CategoryTheory.Equivalence.symmEquiv_inverse, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_obj_val_obj, AlgebraicGeometry.Scheme.evaluation_naturality_assoc, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, CategoryTheory.Equivalence.rightOp_unitIso_inv_app, CategoryTheory.Coyoneda.coyoneda_full, AlgebraicGeometry.tilde.toOpen_res, Alexandrov.projSup_obj, AlgebraicGeometry.tilde.toOpen_res_assoc, CategoryTheory.Limits.hasZeroObject_op, CompHausLike.isIsoSigmaComparison, AlgebraicGeometry.Scheme.Hom.ΞΉ_fromNormalization_assoc, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.faithful_embedding, CategoryTheory.Limits.IndObjectPresentation.ofCocone_F, CategoryTheory.Functor.FullyFaithful.homNatIso'_inv_app_down, HomologicalComplex.acyclic_op_iff, SSet.stdSimplex.objMk_apply, CategoryTheory.NatIso.op_hom, AlgebraicGeometry.Scheme.emptyTo_c_app, TopCat.presheafToType_obj, SSet.horn₃₂.desc.multicofork_Ο€_three, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape_1, CategoryTheory.Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο€, SSet.Truncated.HomotopyCategory.homToNerveMk_app_edge, CompHausLike.LocallyConstant.counit_app_val, CategoryTheory.Limits.widePushoutShapeUnop_map, CategoryTheory.kernel.ΞΉ_op, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_hom_ext_iff, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_inv_app, CategoryTheory.GrothendieckTopology.diagramNatTrans_app, SSet.Subcomplex.PairingCore.notMem₁, isZero_Ext_succ_of_projective, CategoryTheory.Meq.mk_apply, AlgebraicGeometry.affineAnd_apply, AlgebraicTopology.DoldKan.MorphComponents.postComp_Ο†, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, CategoryTheory.Limits.preservesColimitsOfShape_leftOp, CategoryTheory.yonedaEquiv_naturality, CategoryTheory.prodOpEquiv_inverse_obj, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, Condensed.instPreservesFiniteProductsOppositeStoneanVal, CategoryTheory.full_linearYoneda, SimplicialObject.Splitting.Ο€Summand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, SSet.Truncated.StrictSegal.spineToSimplex_interval, SSet.Truncated.hom_ext_iff, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CategoryTheory.unopUnop_map, SSet.N.mk_surjective, HomotopicalAlgebra.fibration_unop_iff, CategoryTheory.Functor.instFullOppositeOp, SheafOfModules.pushforwardNatTrans_app_val_app, CategoryTheory.Limits.IndObjectPresentation.ofCocone_ℐ, CategoryTheory.Presheaf.instIsLocallyPresentableFunctorOppositeOfHasPullbacks, Profinite.Extend.cocone_ΞΉ_app, CategoryTheory.GrothendieckTopology.W_iff, AlgebraicGeometry.HasRingHomProperty.iff_exists_appLE_locally, CategoryTheory.Limits.preservesColimit_op, CategoryTheory.StructuredArrow.functor_obj, CategoryTheory.Presheaf.isLocallySurjective_whisker_iff, SimplicialObject.Split.natTransCofanInj_app, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, preservesColimit_coyoneda_of_finitePresentation, PresheafOfModules.Sheafify.one_smul, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, CategoryTheory.ULiftYoneda.instFaithfulFunctorOppositeTypeUliftYoneda, CategoryTheory.Pretriangulated.commShiftIso_opOp_inv_app_assoc, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_obj_map, AlgebraicTopology.DoldKan.Ξ“β‚€.obj_map, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_inv_app_assoc, AlgebraicGeometry.targetAffineLocally_affineAnd_iff', CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_Ο€_app, AlgebraicGeometry.AffineSpace.reindex_appTop_coord, AlgebraicGeometry.Spec.algebraMap_stalkIso_inv_assoc, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, HomologicalComplex.ExactAt.op, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction, AlgebraicGeometry.smoothOfRelativeDimension_iff, CategoryTheory.enrichedNatTransYoneda_obj, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.LocalizerMorphism.LeftResolution.op_w, AlgebraicGeometry.HasRingHomProperty.iff_exists_appLE, CategoryTheory.Limits.PushoutCocone.op_pt, CategoryTheory.typeEquiv_functor_map_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄_self', CategoryTheory.ObjectProperty.InheritedFromSource.op, AlgebraicGeometry.Ξ“Spec.adjunction_homEquiv_symm_apply, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_obj, AlgebraicGeometry.Scheme.Hom.appLE_appIso_inv_apply, CategoryTheory.SimplicialObject.Augmented.rightOp_left, CategoryTheory.Limits.hasPullbacks_opposite, AlgebraicGeometry.Spec_Ξ“_naturality_assoc, AlgebraicGeometry.Scheme.IdealSheafData.ideal_mono, AlgebraicGeometry.Scheme.Hom.appLE_map'_assoc, AlgebraicGeometry.RingedSpace.isUnit_res_basicOpen, AlgebraicGeometry.Scheme.empty_presheaf, AlgebraicGeometry.IsAffineOpen.isoSpec_hom_apply, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app, TopCat.Presheaf.germ_res'_assoc, AlgebraicGeometry.Scheme.Opens.ΞΉ_app_self, CategoryTheory.Square.op_Xβ‚„, HomotopicalAlgebra.trivialCofibrations_eq_unop, CategoryTheory.Functor.mapConeOp_inv_hom, CategoryTheory.ShortComplex.LeftHomologyData.unop_Q, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft, CategoryTheory.isDetecting_op_iff, CategoryTheory.Functor.WellOrderInductionData.Extension.compatibility, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_of, TopCat.toSheafCompHausLike_val_map, CategoryTheory.Functor.map_shift_unop_assoc, AlgebraicGeometry.Scheme.zeroLocus_span, CategoryTheory.Functor.IsCoverDense.Types.presheafHom_app, HomotopicalAlgebra.instIsStableUnderRetractsOppositeFibrationsOfCofibrations, AlgebraicGeometry.StructureSheaf.toOpen_germ, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality, HomologicalComplex.opEquivalence_functor, AlgebraicGeometry.Scheme.IdealSheafData.ideal_iSup, CategoryTheory.Square.isPullback_iff_map_coyoneda_isPullback, CategoryTheory.monoidalUnopUnop_ΞΌ, AlgebraicGeometry.Scheme.Hom.naturality, CategoryTheory.Comma.opFunctorCompSnd_inv_app, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_hom_app, CategoryTheory.yonedaCommGrpGrp_map_app, CategoryTheory.regularTopology.equalizerCondition_w, SSet.Truncated.Path.arrow_tgt, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, CategoryTheory.RetractArrow.op_i_left, CategoryTheory.Functor.instIsEquivalenceOppositeLeftOp, CategoryTheory.ShortComplex.op_f, AlgebraicGeometry.exists_appTop_Ο€_eq_of_isLimit, SSet.mem_degenerate_iff, SSet.nonDegenerateEquivOfIso_apply_coe, SSet.S.le_iff_nonempty_hom, CategoryTheory.Equivalence.sheafCongr.inverse_obj_val_map, AlgebraicGeometry.Proj.stalkIso'_germ, TopCat.Presheaf.isGluing_iff_pairwise, Alexandrov.lowerCone_pt, SSet.Augmented.stdSimplex_map_left, CategoryTheory.Functor.op_isTriangulated_iff, CategoryTheory.FunctorToTypes.rightAdj_obj_obj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, AlgebraicGeometry.IsAffine.affine, AlgebraicGeometry.IsAffineOpen.instAwayCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecPresheafOpOpensBasicOpen, HomologicalComplex.op_X, CategoryTheory.Sheaf.cartesianMonoidalCategoryFst_val, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_Ο€_app, AlgebraicGeometry.SheafedSpace.Ξ“_obj, CategoryTheory.Arrow.cechNerve_map, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο€_assoc, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_map_f, CategoryTheory.isCardinalPresentable_iff_isCardinalAccessible_coyoneda_obj, CategoryTheory.sheafification_obj, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero, AlgebraicGeometry.Scheme.restrict_presheaf_map, CategoryTheory.Comon.MonOpOpToComonObj_X, CategoryTheory.Sheaf.Ξ“HomEquiv_naturality_right, HomologicalComplex.quasiIso_opFunctor_map_iff, CategoryTheory.ShortComplex.unopMap_id, CategoryTheory.NatIso.op_inv, PresheafOfModules.pushforward_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.map_yonedaEquiv, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.ofRestrict_invApp, AlgebraicGeometry.formallyUnramified_iff, PresheafOfModules.map_id, AlgebraicGeometry.Spec.locallyRingedSpaceObj_presheaf_map', CategoryTheory.op_zsmul, CommGrpCat.coyonedaForget_inv_app_app, CategoryTheory.Sieve.natTransOfLe_app_coe, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv, AlgebraicGeometry.Scheme.mem_basicOpen_top, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_inv_app_val_app_down, CommRingCat.coyonedaUnique_hom_app_hom_apply, Condensed.isoFinYoneda_hom_app, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, SSet.N.le_iff, CategoryTheory.ShortComplex.homologyMap_op, AlgebraicGeometry.IsAffineOpen.range_fromSpec, CategoryTheory.Limits.opProdIsoCoprod_inv_inr_assoc, AlgebraicTopology.NormalizedMooreComplex.objX_zero, CategoryTheory.Limits.hasColimit_rightOp_of_hasLimit, CategoryTheory.GrothendieckTopology.preservesLimits_diagramFunctor, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen', CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality_assoc, CategoryTheory.op_epi_of_mono, AlgebraicTopology.DoldKan.Nβ‚‚_obj_X_d, CategoryTheory.Limits.FormalCoproduct.evalOp_obj_map, AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit_obj, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, Profinite.NobelingProof.spanFunctorIsoIndexFunctor_inv_app, lightDiagramToLightProfinite_map, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_map, AlgebraicGeometry.LocallyRingedSpace.preimage_basicOpen, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_op_iff_op, AlgebraicGeometry.IsAffineOpen.isoSpec_inv_toSpecΞ“_assoc, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_inv_app, CategoryTheory.Subfunctor.toRangeSheafify_app_coe, CategoryTheory.RanIsSheafOfIsCocontinuous.fac, CategoryTheory.Limits.preservesColimitsOfSize_rightOp, AlgebraicGeometry.AffineSpace.homOverEquiv_apply, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom, SimpleGraph.componentComplFunctor_finite, CategoryTheory.Limits.preservesLimitsOfShape_of_leftOp, CategoryTheory.ObjectProperty.op_isoClosure, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_homβ‚‚, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberDesc_assoc, CategoryTheory.Functor.IsCoverDense.isoOver_inv_app, CategoryTheory.Subfunctor.ofSection_le_iff, AlgebraicGeometry.Scheme.basicOpen_res, CommMonCat.coyonedaForget_hom_app_app_hom, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_Ο€, AlgebraicGeometry.Scheme.Opens.fromSpecStalkOfMem_toSpecΞ“_assoc, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, smoothSheaf.ΞΉ_evalHom, CategoryTheory.OverPresheafAux.YonedaCollection.map₁_id, CategoryTheory.linearYoneda_obj_obj_isModule, CategoryTheory.Limits.isColimitOfConeOfCoconeRightOp_desc, AlgebraicGeometry.Smooth.exists_isStandardSmooth, AlgebraicGeometry.SheafedSpace.Ξ“_def, SSet.associator_hom_app_apply, CategoryTheory.instIsIsoFunctorOppositeSheafToPresheafToSheafCompComposeAndSheafify, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ο„l, CategoryTheory.Limits.preservesColimits_op, CategoryTheory.MorphismProperty.leftFractionRel_op_iff, AlgebraicGeometry.Scheme.comp_appTop, smoothSheafCommRing.ΞΉ_evalHom_assoc, CategoryTheory.Limits.Cone.unop_pt, CategoryTheory.SimplicialObject.Οƒ_comp_Οƒ_assoc, CategoryTheory.yonedaEvaluation_map_down, CategoryTheory.yoneda_preservesLimits, CategoryTheory.instIsDiscreteOpposite, AlgebraicGeometry.Scheme.IdealSheafData.radical_ideal, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, CategoryTheory.Comma.opEquiv_inverse, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, CategoryTheory.PresheafHom.IsSheafFor.app_cond, TopCat.Presheaf.Pushforward.comp_hom_app, CategoryTheory.Functor.mapCoconeOp_hom_hom, CategoryTheory.sheafToPresheaf_Ξ΅, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_Ο€_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AlgebraicGeometry.IsClosedImmersion.isAffine_surjective_of_isAffine, AddCommGrpCat.coyoneda_map_app, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inr, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, CommRingCat.instIsRightAdjointOppositeObjFunctorTypeYoneda, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_inv_eq_germ, CategoryTheory.Functor.instEssSurjOppositeRightOp, CategoryTheory.Presieve.piComparison_fac, AlgebraicGeometry.Spec.toPresheafedSpace_obj_op, ContinuousMap.yonedaPresheaf'_map, AlgebraicGeometry.StructureSheaf.toOpenβ‚—_eq_const, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.prodOpEquiv_functor_map, CategoryTheory.MorphismProperty.StableUnderInverse.op, CategoryTheory.NatTrans.op_whiskerLeft, AlgebraicGeometry.isIso_pushoutSection_iff, CategoryTheory.Comon.ComonToMonOpOpObj_mon_mul, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, CategoryTheory.sheafificationAdjunction_counit_app_val, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, CategoryTheory.ShortComplex.rightHomologyFunctorOpNatIso_inv_app, LightCondensed.lanPresheafExt_inv, CategoryTheory.ShortComplex.Homotopy.op_h₁, CategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_op_iff_op, CategoryTheory.isIso_iff_isIso_coyoneda_map, SSet.image_degenerate_le, AlgebraicGeometry.Scheme.fromSpecStalk_app, Condensed.lanPresheafExt_hom, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit_Ο€_apply, CategoryTheory.isFiltered_op_iff_isCofiltered, CategoryTheory.Enriched.FunctorCategory.diagram_obj_map, AlgebraicGeometry.IsAffineOpen.isLocalization_stalk, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map, AlgebraicGeometry.Smooth.smooth_appLE, AlgebraicGeometry.StructureSheaf.res_const, AlgebraicGeometry.PresheafedSpace.GlueData.ΞΉ_jointly_surjective, CategoryTheory.Limits.coneOfSectionCompCoyoneda_Ο€, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_comp, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, CategoryTheory.Functor.instFinalOppositeLeftOpOfInitial, CategoryTheory.Functor.op_comp_isSheaf, AlgebraicGeometry.isField_of_universallyClosed, commBialgCatEquivComonCommAlgCat_inverse_obj, CategoryTheory.Functor.rightOpId_hom_app, AlgebraicGeometry.IsAffineOpen.isoSpec_hom_base_apply, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_comp, CategoryTheory.Limits.instHasBinaryCoproductOppositeOp, CategoryTheory.Presieve.IsSheafFor.functorInclusion_comp_extend_assoc, AlgebraicGeometry.Scheme.IdealSheafData.ideal_inf, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_eq_zero_iff_notMem_basicOpen, CategoryTheory.BraidedCategory.op_tensorΞΌ, SSet.boundary_eq_iSup, CategoryTheory.NatIso.removeOp_hom, CategoryTheory.Subpresheaf.isSheaf_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom, CategoryTheory.GrothendieckTopology.Cover.index_right, Opens.mayerVietorisSquare'_toSquare, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv_assoc, CategoryTheory.Functor.WellOrderInductionData.map_lift, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor_obj, CategoryTheory.Limits.inr_opProdIsoCoprod_inv, smoothSheafCommRing.ΞΉ_forgetStalk_hom, CategoryTheory.Sieve.functorInclusion_is_mono, CategoryTheory.ShortComplex.HomologyData.unop_iso, CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, CategoryTheory.ShortComplex.SnakeInput.op_L₁, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_yoneda_obj, InfiniteGalois.mk_toAlgEquivAux, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_germ, SSet.stdSimplex.spineId_vertex, CategoryTheory.Limits.limitCompYonedaIsoCocone_hom_app, CategoryTheory.GrothendieckTopology.Cover.index_snd, CategoryTheory.ShortComplex.HomologyData.op_iso, AlgebraicGeometry.Scheme.IdealSheafData.subschemeΞΉ_app_surjective, CategoryTheory.Limits.fst_opProdIsoCoprod_hom, AlgebraicGeometry.Scheme.preimage_zeroLocus, SSet.OneTruncationβ‚‚.ofNerveβ‚‚.natIso_inv_app_obj_map, CategoryTheory.Subfunctor.Subpresheaf.family_of_elements_compatible, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.Limits.coconeOfConeLeftOp_ΞΉ_app, Opens.coe_mayerVietorisSquare_Xβ‚„, CategoryTheory.Limits.preservesLimitsOfShape_of_unop, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_obj, AlgebraicGeometry.PresheafedSpace.congr_app, CategoryTheory.Functor.IsRepresentedBy.iff_of_isoObj, CategoryTheory.OverPresheafAux.unitAuxAux_hom_app, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_obj, CategoryTheory.Subfunctor.Subpresheaf.ofSection_le_iff, CategoryTheory.Limits.end_.map_comp_assoc, AlgebraicGeometry.Scheme.AffineZariskiSite.cocone_ΞΉ_app, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, CategoryTheory.Idempotents.DoldKan.Ξ“_map_app, CategoryTheory.PresheafOfGroups.OneCocycle.ev_refl, AlgebraicGeometry.IsAffineOpen.SpecMap_appLE_fromSpec_assoc, CategoryTheory.Limits.Cocone.op_Ο€, CategoryTheory.ShortComplex.op_X₃, CategoryTheory.Limits.preservesFiniteLimits_of_unop, CategoryTheory.Functor.rightOp_additive, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CategoryTheory.Limits.coend.ΞΉ_map_assoc, CategoryTheory.Limits.coconeOfConeUnop_ΞΉ, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.map_lift, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_inter, CategoryTheory.Limits.colimitYonedaHomIsoLimitOp_Ο€_apply, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.coyoneda_preservesLimit, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, AlgebraicTopology.DoldKan.Ξ“β‚‚N₁.natTrans_app_f_app, HomologicalComplex.unopInverse_obj, SSet.degenerate_eq_iUnion_range_Οƒ, AlgebraicGeometry.IsAffineOpen.fromSpec_top, CategoryTheory.WithInitial.opEquiv_functor_obj, CategoryTheory.ObjectProperty.isCodetecting_op_iff, SheafOfModules.relationsOfIsCokernelFree_s, CategoryTheory.Discrete.opposite_inverse_obj, CategoryTheory.Injective.instEnoughInjectivesOppositeOfEnoughProjectives, CategoryTheory.ShiftedHom.opEquiv_symm_apply, HomologicalComplex.opEquivalence_inverse, CategoryTheory.prodOpEquiv_counitIso_hom_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.Fork.op_ΞΉ_app_zero, CategoryTheory.prodOpEquiv_functor_obj, CategoryTheory.Limits.end_.map_Ο€_assoc, CategoryTheory.instLocallySmallOpposite, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.Subfunctor.Subpresheaf.ofSection_image, CategoryTheory.Sieve.functor_map_coe, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso_op, AlgebraicGeometry.Scheme.map_basicOpen_map, CategoryTheory.Limits.cospanOp_inv_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_comp_assoc, CategoryTheory.kernelOpOp_inv, CategoryTheory.coyonedaPairing_map, CategoryTheory.MorphismProperty.instHasRightCalculusOfFractionsOppositeOpOfHasLeftCalculusOfFractions, AlgebraicGeometry.PresheafedSpace.id_c_app, CategoryTheory.Presheaf.tautologicalCocone_ΞΉ_app, CategoryTheory.balanced_opposite, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanIndex_left, CategoryTheory.NatTrans.removeUnop_id, CategoryTheory.Pseudofunctor.CoGrothendieck.map_id_eq, CategoryTheory.Limits.opProdIsoCoprod_inv_inl_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, AlgebraicGeometry.Scheme.Hom.comp_appTop, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.Pretriangulated.instIsHomologicalAddCommGrpCatObjOppositeFunctorPreadditiveCoyoneda, CategoryTheory.ShiftedHom.opEquiv'_apply, SSet.S.equivElements_symm_apply_simplex, CategoryTheory.Presheaf.equalizerSieve_apply, SSet.stdSimplex.face_inter_face, CategoryTheory.LocalizerMorphism.LeftResolution.op_X₁, CategoryTheory.Limits.hasFiniteProducts_opposite, CategoryTheory.Idempotents.instIsIdempotentCompleteOpposite, CategoryTheory.Functor.RepresentableBy.equivUliftYonedaIso_apply, AlgebraicGeometry.IsAffineOpen.Spec_map_appLE_fromSpec, CategoryTheory.isoOpEquiv_apply, CategoryTheory.Functor.leftOp_map, CategoryTheory.simplicialCosimplicialAugmentedEquiv_inverse, AlgebraicGeometry.IsIntegralHom.hasAffineProperty, CategoryTheory.Equivalence.leftOp_counitIso_hom_app, CategoryTheory.constantSheafAdj_counit_w, CategoryTheory.Limits.preservesColimits_of_leftOp, SSet.stdSimplex.mem_nonDegenerate_iff_mono, CategoryTheory.OverPresheafAux.yonedaCollectionPresheafMap₁_app, SimplicialObject.Splitting.Οƒ_comp_Ο€Summand_id_eq_zero, CategoryTheory.Presheaf.tautologicalCocone'_ΞΉ_app, PresheafOfModules.pushforward_obj_map_apply', CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.presheafHom_naturality_assoc, CategoryTheory.unop_hom_rightUnitor, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_Spec, CategoryTheory.Limits.walkingSpanOpEquiv_functor_obj, CategoryTheory.Subfunctor.IsGeneratedBy.mem, CategoryTheory.Functor.PullbackObjObj.Ο€_snd, CategoryTheory.Presheaf.coconeOfRepresentable_ΞΉ_app, SSet.horn₃₂.desc.multicofork_pt, CompHausLike.LocallyConstant.sigmaComparison_comp_sigmaIso, CategoryTheory.Limits.pushoutIsoOpPullback_inv_snd, CompHausLike.LocallyConstant.unit_app, AlgebraicGeometry.Scheme.basicOpen_zero, InfiniteGalois.proj_of_le, CategoryTheory.PresheafIsGeneratedBy.of_epi, HomologicalComplex.cyclesOpNatIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Limits.Cofork.op_Ο€_app_one, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, AlgebraicGeometry.Scheme.IdealSheafData.ideal_ofIdeals_le, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ€_inv_app, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, AlgebraicGeometry.LocallyOfFinitePresentation.finitePresentation_of_affine_subset, AlgebraicGeometry.Scheme.Hom.appLE_comp_appLE_assoc, SSet.N.nonDegenerate, AlgebraicGeometry.Scheme.SpecMap_presheaf_map_eqToHom, AlgebraicGeometry.IsAffineOpen.fromSpec_image_basicOpen, PresheafOfModules.Hom.naturality, AlgebraicGeometry.instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen_image_preimage, CategoryTheory.IsPushout.op, CategoryTheory.Subfunctor.IsGeneratedBy.image, SSet.Truncated.Path.mkβ‚‚_vertex, skyscraperPresheafCoconeOfSpecializes_ΞΉ_app, CategoryTheory.Sheaf.comp_val_assoc, HomotopicalAlgebra.cofibration_unop_iff, CategoryTheory.Under.opEquivOpOver_inverse_obj, CategoryTheory.Subpresheaf.eq_sheafify_iff, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, CategoryTheory.PresheafHom.IsSheafFor.exists_app, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, CategoryTheory.Limits.pullbackIsoOpPushout_inv_snd_assoc, AlgebraicGeometry.IsAffineOpen.basicOpen_union_eq_self_iff, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_map_injective, AlgebraicGeometry.LocallyRingedSpace.restrictStalkIso_hom_eq_germ_assoc, CategoryTheory.Iso.unop_inv_hom_id_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, AlgebraicGeometry.isFinite_iff, TopCat.Presheaf.presheafEquivOfIso_inverse_obj_obj, CategoryTheory.yoneda'_comp, SSet.prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, SheafOfModules.forgetToSheafModuleCat_map_val, CategoryTheory.Coyoneda.fullyFaithful_preimage, SSet.yonedaEquiv_comp, LightCondSet.topCatAdjunctionUnit_val_app, AlgebraicGeometry.etale_iff, SSet.Truncated.IsStrictSegal.spine_bijective, SSet.op_map, CategoryTheory.Limits.isColimitCoconeOfConeLeftOp_desc, CommGrpCat.coyonedaType_obj_map, CategoryTheory.Functor.mapConeOp_hom_hom, CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor_map, CategoryTheory.Subpresheaf.le_sheafify, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply, HomologicalComplex.fromOpcycles_op_cyclesOpIso_inv, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, SSet.stdSimplex.spineId_arrow_apply_one, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, AlgebraicGeometry.Scheme.germ_residue_assoc, CategoryTheory.unop_hom_braiding, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_HΟƒ_eq, CategoryTheory.simplicialCosimplicialAugmentedEquiv_functor, CategoryTheory.RetractArrow.unop_i_left, AlgebraicGeometry.IsAffineOpen.Spec_map_appLE_fromSpec_assoc, PresheafOfModules.instReflectsIsomorphismsSheafOfModulesFunctorOppositeAddCommGrpCatCompSheafToSheafSheafToPresheaf, CategoryTheory.cosimplicialToSimplicialAugmented_map, AlgebraicGeometry.Scheme.kerFunctor_obj, PresheafOfModules.freeAdjunction_unit_app, SSet.OneTruncationβ‚‚.nerveHomEquiv_apply, TopCat.Presheaf.Ξ“germ_res_apply, AlgebraicGeometry.Spec.toPresheafedSpace_map, CategoryTheory.Equivalence.unop_inverse, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_jointly_surjectiveβ‚‚, CategoryTheory.isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj, AlgebraicGeometry.StructureSheaf.comap_basicOpen, CategoryTheory.Limits.Ο€_comp_colimitRightOpIsoUnopLimit_inv_assoc, Condensed.underlying_obj, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left, CategoryTheory.Functor.instIsEquivalenceOppositeRightOp, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ο„l, CategoryTheory.Sheaf.sheafifyCocone_ΞΉ_app_val_assoc, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso, CategoryTheory.unop_zsmul, CategoryTheory.Sheaf.Hom.add_app, AlgebraicGeometry.Scheme.mem_basicOpen'', CategoryTheory.PresheafIsGeneratedBy.range, CategoryTheory.Limits.Cocone.extend_ΞΉ, CategoryTheory.Presieve.extension_iff_amalgamation, SSet.StrictSegalCore.map_mkOfSucc_zero_spineToSimplex, SimpleGraph.componentComplFunctor_nonempty_of_infinite, CategoryTheory.GrothendieckTopology.Point.instPreservesColimitsOfShapeOppositeElementsFiberForget, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, AlgebraicGeometry.Scheme.AffineZariskiSite.cocone_pt, CategoryTheory.ShortComplex.RightHomologyData.op_i, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.GrothendieckTopology.diagramNatTrans_id, AlgebraicGeometry.Scheme.Spec_obj, AlgebraicGeometry.tilde.toOpen_map_app_assoc, CategoryTheory.Equivalence.sheafCongr.inverse_map_val_app, CategoryTheory.Limits.isLimitOfCoconeUnopOfCone_lift, SSet.horn.primitiveEdge_coe_down, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_mk, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Equivalence.preregular_isSheaf_iff_of_essentiallySmall, CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_iff_unop, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.Functor.IsDenseSubsite.map_eq_of_eq, AlgebraicGeometry.basicOpen_eq_of_affine, AlgebraicGeometry.LocallyRingedSpace.Ξ“_map_op, CategoryTheory.Functor.op_comp_isSheaf_of_preservesOneHypercovers, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanIndex_snd, CategoryTheory.PreGaloisCategory.PointedGaloisObject.instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, CategoryTheory.Limits.IndObjectPresentation.cocone_pt, localCohomology.hasColimitDiagram, CategoryTheory.Limits.preservesLimits_of_rightOp, AlgebraicGeometry.Scheme.Opens.ΞΉ_appLE, CategoryTheory.Yoneda.fullyFaithful_preimage, AlgebraicGeometry.AffineScheme.forgetToScheme_obj, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο€, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom_op, AlgebraicGeometry.Scheme.Ξ“SpecIso_naturality_assoc, SSet.StrictSegal.spineToSimplex_arrow, CategoryTheory.coyonedaEquiv_symm_map, AlgebraicGeometry.IsAffineOpen.fromSpec_toSpecΞ“_assoc, CategoryTheory.Limits.instHasColimitOppositeDiscreteOpFunctor, CategoryTheory.Functor.opHom_map_app, CategoryTheory.Limits.opCoproductIsoProduct_hom_comp_Ο€_assoc, CategoryTheory.Comon.monoidal_associator_inv_hom, SSet.Subcomplex.range_eq_top_iff, CategoryTheory.Limits.proj_comp_opProductIsoCoproduct'_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_inverse, CategoryTheory.ShortComplex.unopMap_τ₃, AlgebraicGeometry.IsAffineOpen.fromSpec_image_zeroLocus, AlgebraicGeometry.Spec.toLocallyRingedSpace_map, AlgebraicGeometry.Scheme.appLE_comp_appLE, CategoryTheory.instFaithfulIndFunctorOppositeTypeInclusion, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_map, CategoryTheory.equivYoneda'_hom_val, AlgebraicGeometry.Scheme.IdealSheafData.mem_supportSet_iff_of_mem, AlgebraicGeometry.LocallyRingedSpace.isUnit_res_toΞ“SpecMapBasicOpen, AlgebraicGeometry.Scheme.affineBasisCover_map_range, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.regularTopology.equalizerCondition_iff_of_equivalence, CategoryTheory.ObjectProperty.isSeparating_op_iff, CategoryTheory.Limits.PushoutCocone.unop_pt, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, CategoryTheory.ObjectProperty.colimitsOfShape_eq_unop_limitsOfShape, LightCondensed.id_val, InfiniteGalois.algEquivToLimit_continuous, TopCat.Presheaf.germ_stalkSpecializes, CategoryTheory.Limits.SequentialProduct.cone_Ο€_app, PresheafOfModules.freeYonedaEquiv_comp, AlgebraicGeometry.Ξ“Spec_adjunction_homEquiv_eq, CategoryTheory.PresheafOfGroups.OneCochain.inv_ev, CategoryTheory.instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful, HomotopicalAlgebra.instIsStableUnderRetractsOppositeCofibrationsOfFibrations, AddCommMonCat.coyoneda_obj_map, CategoryTheory.Pretriangulated.Opposite.instAdditiveOppositeShiftFunctorInt, CategoryTheory.NatIso.unop_refl, PresheafOfModules.Sheafify.zero_smul, AlgebraicGeometry.Scheme.Opens.ΞΉ_app, CategoryTheory.toSheafify_naturality_assoc, SSet.StrictSegal.spine_spineToSimplex, CategoryTheory.RetractArrow.unop_i_right, AlgebraicGeometry.Scheme.Modules.pushforwardCongr_inv_app_app, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_Ο€_assoc, AlgebraicGeometry.Scheme.IdealSheafData.supportSet_inter, AlgebraicGeometry.locallyOfFinitePresentation_iff, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, AlgebraicGeometry.IsAffineOpen.isOpenImmersion_fromSpec, CategoryTheory.cones_map_app_app, CategoryTheory.Limits.preservesLimits_of_unop, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ΞΉ_assoc, SSet.Truncated.Edge.CompStruct.dβ‚€, CommGrpCat.coyoneda_obj_map, HomotopicalAlgebra.weakEquivalences_eq_unop, CompHausLike.LocallyConstant.incl_comap, SSet.Truncated.Edge.map_whiskerRight, CategoryTheory.isDetecting_unop_iff, CategoryTheory.Presieve.FamilyOfElements.compPresheafMap_id, SSet.Truncated.comp_app, CategoryTheory.Functor.sheafPushforwardContinuousId_inv_app_val_app, LightProfinite.Extend.functor_obj, LightCondensed.isoFinYoneda_hom_app, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_hom_app_assoc, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.mapMono_on_summand_id_assoc, CategoryTheory.coyonedaPairingExt_iff, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, CategoryTheory.Pretriangulated.preadditiveYoneda_shiftMap_apply, AlgebraicGeometry.SheafedSpace.congr_hom_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right, AlgebraicGeometry.Scheme.Hom.instIsIsoCommRingCatApp, CategoryTheory.Presieve.IsSheafFor.valid_glue, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, AlgebraicGeometry.Scheme.Spec_map, CategoryTheory.RelCat.opFunctor_comp_unopFunctor_eq, CategoryTheory.evalEquiv_symm_apply, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, SSet.Subcomplex.preimage_iSup, CategoryTheory.NatTrans.Equifibered.op, CategoryTheory.Limits.Cone.op_pt, CategoryTheory.Equivalence.unop_unitIso, CategoryTheory.instFullFunctorOppositeTypeShrinkYoneda, CategoryTheory.cosimplicialSimplicialEquiv_inverse_map, CategoryTheory.Adjunction.representableBy_homEquiv, CategoryTheory.Functor.Elements.initialOfRepresentableBy_snd, CategoryTheory.Equivalence.inverseFunctorObjIso_hom, AlgebraicGeometry.PresheafedSpace.restrict_presheaf, CategoryTheory.Limits.preservesColimits_of_rightOp, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_one, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_of_le_assoc, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄, HomologicalComplex.instIsStrictlySupportedOppositeOpOp, SSet.Path.map_vertex, CategoryTheory.Limits.preservesLimitsOfSize_of_leftOp, SSet.Truncated.Edge.CompStruct.map_simplex, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj, AlgebraicGeometry.Scheme.germ_residue, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft, HomologicalComplex.unopEquivalence_inverse, CategoryTheory.Limits.coconeRightOpOfCone_pt, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_hom_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_inv_app', AlgebraicGeometry.PresheafedSpace.GlueData.ΞΉInvApp_Ο€, ContinuousMap.comp_yonedaPresheaf', CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_left, CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation.map, TopCat.Presheaf.presheafEquivOfIso_functor_map_app, SSet.stdSimplex.face_le_face_iff, CategoryTheory.Equivalence.inverseFunctorObj'_inv_app, CategoryTheory.Enriched.FunctorCategory.enrichedComp_Ο€, LightProfinite.proj_surjective, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xβ‚‚, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_map_surjective, CategoryTheory.eqToHom_comp_homOfLE_op_assoc, CategoryTheory.extensiveTopology.surjective_of_isLocallySurjective_sheaf_of_types, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_naturality, AlgebraicTopology.DoldKan.Ξ“β‚‚_obj_X_obj, AlgebraicGeometry.Scheme.Hom.ΞΉ_fromNormalization, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_zeroLocus_eq, AlgebraicGeometry.LocallyRingedSpace.restrictStalkIso_inv_eq_germ, PresheafOfModules.toPresheaf_preservesColimitsOfSize, AlgebraicGeometry.LocallyRingedSpace.SpecΞ“Identity_hom_app, CategoryTheory.ParametrizedAdjunction.homEquiv_eq, CategoryTheory.Equivalence.symmEquivInverse_obj_unitIso_inv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, CategoryTheory.Pseudofunctor.DescentData.hom_self, AlgebraicGeometry.IsOpenImmersion.map_Ξ“Iso_hom, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, AlgebraicGeometry.Scheme.Hom.map_appLE, SSet.PtSimplex.RelStruct.Ξ΄_succ_map, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_pt, CategoryTheory.Limits.op_zero, CategoryTheory.Iso.unop_inv_hom_id_app_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft_op, CategoryTheory.ShortComplex.opcyclesOpIso_hom_toCycles_op, AlgebraicGeometry.Scheme.Ξ“evaluation_naturality, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, SheafOfModules.Presentation.IsFinite.finite_relations, LightProfinite.proj_comp_transitionMapLE, LightProfinite.instEpiAppOppositeNatΟ€AsLimitCone, SSet.OneTruncationβ‚‚.map_obj, CategoryTheory.Limits.Ο€_comp_colimitUnopIsoOpLimit_inv_assoc, AlgebraicGeometry.basicOpen_eq_bot_iff, SSet.Οƒ_naturality_apply, AlgebraicGeometry.Scheme.IdealSheafData.ker_glueDataObjΞΉ_appTop, SheafOfModules.pushforwardNatTrans_app_val_app_apply, AlgebraicGeometry.FormallyUnramified.formallyUnramified_appLE, CategoryTheory.Sieve.uliftFunctorInclusion_top_isIso, CategoryTheory.Limits.walkingParallelPairOp_one, AlgebraicGeometry.Spec.germ_stalkMapIso_hom, CategoryTheory.Equivalence.unop_functor, CategoryTheory.GrothendieckTopology.Point.toPresheafFiberNatTrans_app, AlgebraicTopology.DoldKan.Ξ“β‚‚_map_f_app, AlgebraicGeometry.Scheme.Hom.appIso_inv_app_apply, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_hom_app, CategoryTheory.whiskering_linearYonedaβ‚‚, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CategoryTheory.op_neg, CategoryTheory.isCoseparator_op_iff, AddCommMonCat.coyonedaForget_hom_app_app_hom, AlgebraicTopology.DoldKan.decomposition_Q, PresheafOfModules.Finite.evaluation_preservesFiniteColimits, CategoryTheory.ShortComplex.RightHomologyData.unop_Ο€, CategoryTheory.ShortComplex.leftHomologyFunctorOpNatIso_inv_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, CategoryTheory.LocalizerMorphism.RightResolution.op_w, CategoryTheory.Functor.op_commShiftIso_hom_app, CategoryTheory.instSmallHomFunctorOppositeTypeColimitCompYoneda, AlgebraicTopology.DoldKan.Οƒ_comp_P_eq_zero, CategoryTheory.Equivalence.op_unitIso, CategoryTheory.Groupoid.invEquivalence_unitIso, AlgebraicGeometry.Spec.fromSpecStalk_eq, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, skyscraperPresheafCoconeOfSpecializes_pt, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over, CategoryTheory.instPreservesColimitFunctorOppositeTypeObjCoyonedaOpYoneda, CategoryTheory.Over.opEquivOpUnder_functor_map, CategoryTheory.op_sub, CategoryTheory.Subfunctor.to_sheafifyLift, SSet.S.mk_map_le, CategoryTheory.ShortComplex.Homotopy.unop_hβ‚€, SSet.S.IsUniquelyCodimOneFace.existsUnique_Ξ΄_cast_simplex, AlgebraicGeometry.PresheafedSpace.GlueData.Ο€_ΞΉInvApp_Ο€, TopCat.Presheaf.stalkFunctor_map_germ, CategoryTheory.PresheafHom.isAmalgamation_iff, CategoryTheory.Limits.SequentialProduct.functorMap_commSq_succ, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, AlgebraicGeometry.Scheme.IdealSheafData.ideal_biInf, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_hom_app, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, PresheafOfModules.sections_ext_iff, CategoryTheory.Functor.IsContinuous.op_comp_isSheaf_of_types, CategoryTheory.Equivalence.op_inverse, AlgebraicTopology.DoldKan.Ξ“β‚€.obj_obj, CategoryTheory.Limits.isColimitOfConeOfCoconeUnop_desc, PresheafOfModules.toPresheaf_map_sheafificationAdjunction_unit_app, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality, CategoryTheory.Functor.PullbackObjObj.Ο€_fst_assoc, CategoryTheory.ShortComplex.opEquiv_unitIso, CategoryTheory.cokernelUnopOp_inv, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_basicOpen', CondensedSet.toTopCatMap_hom_apply, CategoryTheory.Functor.IsRepresentedBy.of_isoObj, CategoryTheory.Square.IsPushout.op, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_hom_app_hom₃, AlgebraicGeometry.structurePresheafInCommRingCat_obj_carrier, CategoryTheory.nerveMap_app, CategoryTheory.Presieve.isSheaf_yoneda', TopCat.Presheaf.germToPullbackStalk_stalkPullbackHom_assoc, CategoryTheory.Limits.opProductIsoCoproduct_inv_comp_lift, CategoryTheory.Limits.Cocone.unop_pt, CategoryTheory.Limits.hasFiniteLimits_opposite, HomologicalComplex.unop_d, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, CategoryTheory.Limits.ΞΉ_comp_colimitLeftOpIsoUnopLimit_hom_assoc, AlgebraicGeometry.IsAffineOpen.app_basicOpen_eq_away_map, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecMapBasicOpen_eq, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, CategoryTheory.uliftYonedaMap_app_apply, CategoryTheory.Functor.WellOrderInductionData.Extension.map_limit, InfiniteGalois.limitToAlgEquiv_symm_apply, CategoryTheory.OverPresheafAux.counitForward_counitBackward, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso, CategoryTheory.Limits.Wedge.condition_assoc, CategoryTheory.Functor.IsCoverDense.Types.appIso_hom, AlgebraicGeometry.StructureSheaf.instAwayObjOppositeOpensCarrierTopValStructureSheafInTypeOpBasicOpen, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, CategoryTheory.NatIso.unop_inv, AlgebraicGeometry.Scheme.preimage_basicOpen, CategoryTheory.OverPresheafAux.costructuredArrowPresheafToOver_obj, HomologicalComplex.opFunctor_additive, CategoryTheory.Limits.hasColimits_op_of_hasLimits, CategoryTheory.GrothendieckTopology.Point.presheafFiber_hom_ext_iff, AlgebraicGeometry.Scheme.Opens.instIsIsoCommRingCatAppLEΞΉTopToScheme, CategoryTheory.Limits.pullbackIsoOpPushout_hom_inl_assoc, CategoryTheory.orderDualEquivalence_inverse_obj, CategoryTheory.Sieve.equalizer_eq_equalizerSieve, SSet.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.Equivalence.leftOp_inverse_obj, LightCondensed.comp_val, CategoryTheory.Limits.multispanIndexCoend_fst, TopCat.Presheaf.toPushforwardOfIso_app, CategoryTheory.Limits.snd_opProdIsoCoprod_hom_assoc, AlgebraicGeometry.IsAffineOpen.Ξ“SpecIso_hom_fromSpec_app, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom, CategoryTheory.sheafBotEquivalence_counitIso, CategoryTheory.kernelOpOp_hom, CategoryTheory.Limits.coconeUnopOfCone_ΞΉ, AlgebraicGeometry.Scheme.exists_le_and_germ_injective, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, CategoryTheory.cones_obj_obj, CategoryTheory.Functor.FullyFaithful.homNatIso_hom_app_down, AlgebraicGeometry.Scheme.Hom.flat_appLE, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, AlgebraicTopology.AlternatingFaceMapComplex.obj_X, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.Square.unop_Xβ‚„, SSet.N.iSup_subcomplex_eq_top, CategoryTheory.GrothendieckTopology.W_eq_W_range_sheafToPresheaf_obj, AlgebraicGeometry.Scheme.affineOpenCover_X, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, AlgebraicGeometry.Scheme.comp_app_assoc, CategoryTheory.MorphismProperty.instIsStableUnderRetractsOppositeOp, CategoryTheory.ShortComplex.cyclesOpIso_inv_op_iCycles, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj_assoc, SSet.Truncated.Path₁.arrow_src, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_invApp_assoc, AlgebraicGeometry.instQuasiCompactToSpecΞ“OfCompactSpaceCarrierCarrierCommRingCat, SkyscraperPresheafFunctor.map'_app, CategoryTheory.Subobject.functor_map, AlgebraicGeometry.LocallyRingedSpace.evaluation_naturality_assoc, AlgebraicGeometry.IsAffineOpen.SpecMap_appLE_fromSpec, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_one, CategoryTheory.sheafComposeIso_hom_fac_assoc, AlgebraicGeometry.morphismRestrict_app, CategoryTheory.Functor.PullbackObjObj.hom_ext_iff, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_map_val_app, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_left_map, AlgebraicGeometry.AffineSpace.comp_homOfVector_assoc, CategoryTheory.Functor.leftOpRightOpEquiv_functor_map_app, CategoryTheory.sheafification_reflective, CategoryTheory.yonedaGrp_map_app, AlgebraicGeometry.Scheme.Hom.appLE_comp_appLE, CategoryTheory.ShortComplex.HomologyData.unop_right, PresheafOfModules.germ_ringCat_smul, AlgebraicTopology.DoldKan.Q_f_naturality, CategoryTheory.sheafComposeIso_inv_fac, CategoryTheory.Equalizer.FirstObj.ext_iff, AlgebraicGeometry.LocallyRingedSpace.toStalk_stalkMap_toΞ“Spec, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_inv_app, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_hom_app_assoc, CategoryTheory.Limits.preservesLimit_of_rightOp, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality, CategoryTheory.Under.opEquivOpOver_unitIso, AlgebraicGeometry.Scheme.Hom.toImage_app, CategoryTheory.sheafHomSectionsEquiv_symm_apply_coe_apply, AlgebraicGeometry.Scheme.Modules.restrictFunctorId_hom_app_app, TopCat.Sheaf.eq_of_locally_eq_iff, CategoryTheory.MorphismProperty.presheaf_monomorphisms_le_monomorphisms, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ΞΉ_assoc, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_Ο€_assoc, LightCondensed.underlying_map, PresheafOfModules.naturality_apply, CategoryTheory.ShortComplex.RightHomologyData.unop_H, AlgebraicGeometry.IsAffineOpen.isoSpec_hom, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv_def, AlgebraicGeometry.Scheme.Modules.Hom.app_smul, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.map_epi_on_summand_id, SSet.Truncated.Edge.CompStruct.d₁, CategoryTheory.unop_hom_associator, CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_hom_app_app, CategoryTheory.Limits.Cofork.unop_ΞΉ, CategoryTheory.NatTrans.unop_whiskerRight_assoc, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_app_spec, AlgebraicGeometry.Scheme.Ξ“_obj_op, CategoryTheory.Join.opEquiv_functor_map_op_inclLeft, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_invApp, CategoryTheory.coyonedaFunctor_preservesLimits, CategoryTheory.map_shrinkYonedaEquiv, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_hom_app, CategoryTheory.ObjectProperty.small_unop_iff, SimpleGraph.componentComplFunctor_map, Condensed.underlying_map, CategoryTheory.OverPresheafAux.YonedaCollection.map₁_snd, TopCat.Presheaf.IsSheaf.isSheafOpensLeCover, CategoryTheory.WithInitial.opEquiv_inverse_map, CategoryTheory.Equivalence.sheafCongr.functor_obj_val_obj, CategoryTheory.Presieve.FamilyOfElements.map_comp, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.Functor.IsRepresentedBy.iff_natIso, TopCat.Presheaf.IsSheaf.isSheafUniqueGluing, CategoryTheory.Limits.preservesColimitsOfShape_op, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_inv_app_val_app, SSet.Subcomplex.PairingCore.notMemβ‚‚, PresheafOfModules.instFullRestrictScalarsIdFunctorOppositeRingCat, SSet.Subcomplex.topIso_hom, SSet.OneTruncationβ‚‚.id_edge, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.yonedaEquiv_symm_map, CategoryTheory.Pretriangulated.Opposite.instIsTriangulatedOpposite, AlgebraicGeometry.Scheme.image_zeroLocus, AlgebraicGeometry.Scheme.Hom.appLE_map, CategoryTheory.HasCodetector.hasDetector_op, AlgebraicGeometry.Scheme.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, AlgebraicGeometry.HasRingHomProperty.iff_of_source_openCover, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecCBasicOpens_app, CategoryTheory.ShortComplex.cyclesOpIso_inv_naturality_assoc, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, AlgebraicGeometry.LocallyRingedSpace.evaluation_eq_zero_iff_notMem_basicOpen, AlgebraicGeometry.isIso_toSpecΞ“, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_left_obj, CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_id_map, CategoryTheory.Limits.opParallelPairIso_inv_app_zero, AlgebraicGeometry.Proj.res_apply, CategoryTheory.CostructuredArrow.projectQuotient_factors, TopCat.Presheaf.app_injective_iff_stalkFunctor_map_injective, AlgebraicGeometry.StructureSheaf.comapβ‚—_eq_localRingHom, CategoryTheory.Sieve.toFunctor_app_coe, CategoryTheory.isFinitelyPresentable_iff_preservesFilteredColimits, CategoryTheory.constantPresheafAdj_counit_app_app, CategoryTheory.Equivalence.sheafCongr.unitIso_inv_app_val_app, SheafOfModules.pushforwardSections_coe, AlgebraicGeometry.Scheme.Opens.topIso_hom, CategoryTheory.Limits.ΞΉ_comp_colimitLeftOpIsoUnopLimit_hom, CategoryTheory.GrothendieckTopology.map_yonedaEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ο„r, AlgebraicTopology.alternatingFaceMapComplex_obj_X, PresheafOfModules.Sheafify.smul_zero, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, CategoryTheory.Functor.reprW_hom_app, PresheafOfModules.Sheafify.map_smul, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, CategoryTheory.uliftCoyonedaEquiv_symm_map, AlgebraicGeometry.StructureSheaf.toOpen_res, CategoryTheory.Presheaf.isSheaf_coherent_of_hasPullbacks_comp, CategoryTheory.Limits.opParallelPairIso_inv_app_one, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_hom_eq_germ_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_Ο€, CategoryTheory.presheafIsGeneratedBy_of_isFinite, AlgebraicGeometry.Scheme.ofRestrict_app, AlgebraicGeometry.structurePresheafInModuleCat_obj_carrier, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_app_spec_assoc, AlgebraicGeometry.SheafedSpace.congr_app, CategoryTheory.op_associator, CategoryTheory.yonedaYonedaColimit_app_inv, CategoryTheory.Sheaf.Ξ“ObjEquivSections_naturality, CategoryTheory.Limits.Cone.extensions_app, CategoryTheory.yonedaEquiv_symm_naturality_left, CategoryTheory.Limits.inl_opProdIsoCoprod_inv, PresheafOfModules.germ_smul, CategoryTheory.Limits.preservesLimitsOfShape_rightOp, AlgebraicGeometry.Scheme.zeroLocus_univ, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, CategoryTheory.Limits.snd_opProdIsoCoprod_hom, CategoryTheory.Equalizer.Presieve.Arrows.SecondObj.ext_iff, CategoryTheory.imageUnopOp_inv_comp_op_factorThruImage, CategoryTheory.Presheaf.comp_isLocallyInjective_iff, SSet.leftUnitor_hom_app_apply, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecCApp_spec, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.map_on_summand', TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, CategoryTheory.Limits.coneUnopOfCocone_Ο€, CategoryTheory.ShortComplex.Splitting.unop_s, CategoryTheory.ObjectProperty.IsCodetecting.isIso_iff_of_epi, CategoryTheory.NatIso.unop_whiskerLeft, HomotopicalAlgebra.instHasTwoOutOfThreePropertyOppositeWeakEquivalences, CategoryTheory.Limits.isColimitCoconeOfConeUnop_desc, LightCondSet.toTopCatMap_hom_apply, CategoryTheory.Presieve.isSheaf_comp_uliftFunctor_iff, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isIso_post, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ΞΉ, AlgebraicGeometry.Scheme.Hom.comp_appTop_assoc, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, CategoryTheory.GrothendieckTopology.diagramNatTrans_zero, CategoryTheory.Equivalence.leftOp_functor_map, CategoryTheory.NatIso.unop_hom, AlgebraicGeometry.IsAffineOpen.fromSpec_app_of_le, CondensedSet.epi_iff_locallySurjective_on_compHaus, AlgebraicGeometry.SheafedSpace.instEpiTopCatBaseHomPresheafedSpaceΟ€, AlgebraicGeometry.StructureSheaf.const_mul, AlgebraicGeometry.AffineSpace.map_appTop_coord, CategoryTheory.Comma.unopFunctorCompSnd_hom_app, CategoryTheory.Pretriangulated.preadditiveYoneda_map_distinguished, CategoryTheory.coyonedaFunctor_reflectsLimits, AlgebraicGeometry.Scheme.toSpecΞ“_preimage_basicOpen, CategoryTheory.Presheaf.instIsLocallyInjectiveHomΞΉOpposite, LightCondensed.lanPresheafExt_hom, CategoryTheory.yonedaEquiv_symm_naturality_right, CategoryTheory.PreGaloisCategory.PointedGaloisObject.cocone_app, CategoryTheory.Limits.FormalCoproduct.cech_obj, CategoryTheory.constantSheafAdj_counit_app, PresheafOfModules.toSheafify_app_apply, CategoryTheory.Equalizer.Sieve.SecondObj.ext_iff, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.isDetector_op_iff, CategoryTheory.unop_tensorObj, CategoryTheory.NatTrans.rightOp_id, AlgebraicGeometry.Scheme.Hom.app_appIso_inv, AlgebraicGeometry.isIso_fromTildeΞ“_iff, CategoryTheory.isCodetecting_unop_iff, TopCat.Sheaf.interUnionPullbackCone_pt, CategoryTheory.NatTrans.removeRightOp_id, HomologicalComplex.unopFunctor_map_f, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_functor, CategoryTheory.sheafSectionsNatIsoEvaluation_hom_app, HomologicalComplex.homologyOp_hom_naturality, CategoryTheory.Enriched.FunctorCategory.enrichedId_Ο€, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Square.opFunctor_map_Ο„β‚„, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberCompIso_hom_app_assoc, CategoryTheory.GrothendieckTopology.preservesLimit_diagramFunctor, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionObj_op, CategoryTheory.Adjunction.op_counit, CategoryTheory.Presheaf.isSheaf_iff_isSheaf_forget, CategoryTheory.ShortComplex.fromOpcycles_op_cyclesOpIso_inv, SSet.horn₃₂.desc.multicofork_Ο€_zero, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_map_app, AlgebraicGeometry.Scheme.Hom.normalizationObjIso_hom_val, AlgebraicGeometry.Scheme.openCoverBasicOpenTop_f, CategoryTheory.Functor.unopId_hom_app, CategoryTheory.Limits.IndObjectPresentation.yoneda_I, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_comp_coyoneda, SSet.stdSimplex.objEquiv_symm_apply, AlgebraicTopology.DoldKan.Ξ“β‚€_obj_termwise_mapMono_comp_PInfty_assoc, CategoryTheory.MorphismProperty.LeftFractionRel.op, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_hom_c_app, SSet.horn₃₂.desc.multicofork_Ο€_three_assoc, CategoryTheory.OverPresheafAux.OverArrows.map_val, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt, CategoryTheory.Adjunction.Quadruple.op_adjβ‚‚, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, CategoryTheory.RetractArrow.unop_r_left, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.hasCodetector_op_iff, CategoryTheory.PreOneHypercover.forkOfIsColimit_ΞΉ_map_inj, CategoryTheory.Equivalence.symmEquivInverse_obj_inverse, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_one_assoc, PresheafOfModules.pushforwardβ‚€_obj_obj_isModule, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_assoc, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_yonedaULift_map, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_hom_app, CategoryTheory.ShortComplex.LeftHomologyData.unop_g', AlgebraicTopology.DoldKan.Nβ‚‚_map_f_f, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinset_obj_obj, CategoryTheory.Subfunctor.family_of_elements_compatible, SSet.Subcomplex.PairingCore.nonDegenerate₁, SSet.horn₃₂.desc.multicofork_Ο€_one_assoc, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_obj, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_preadditiveYoneda_obj, CategoryTheory.uliftYonedaIsoYoneda_inv_app_app_down, AlgebraicGeometry.isField_of_isIntegral_of_subsingleton, CategoryTheory.NatTrans.leftOp_comp, CategoryTheory.uliftYonedaEquiv_symm_map_assoc, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, AlgebraicGeometry.exists_of_res_eq_of_qcqs, AlgebraicGeometry.PresheafedSpace.map_comp_c_app, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr, HomologicalComplex.opcyclesOpIso_hom_toCycles_op_assoc, CategoryTheory.Functor.instEssSurjOppositeLeftOp, CategoryTheory.Limits.opSpan_inv_app, CategoryTheory.unop_inv_rightUnitor, CategoryTheory.Limits.SequentialProduct.cone_Ο€_app_comp_Pi_Ο€_neg, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.preservesFiniteColimits_embedding, CategoryTheory.Limits.coendFunctor_map, CategoryTheory.Limits.coyonedaCompLimIsoCones_hom_app_app, HomotopicalAlgebra.trivialFibrations_op, CategoryTheory.Functor.sheafPushforwardContinuousId'_hom_app_val_app, TopCat.subpresheafToTypes_obj, TopCat.Presheaf.submonoidPresheafOfStalk_obj, Condensed.isoFinYoneda_inv_app, HomologicalComplex.quasiIsoAt_opFunctor_map_iff, SSet.Truncated.StrictSegal.spine_Ξ΄_vertex_lt, CategoryTheory.Limits.FormalCoproduct.evalOp_obj_obj, CategoryTheory.Presheaf.isLocallyInjective_toPlus, SSet.nondegenerate_zero, CategoryTheory.RelCat.instIsEquivalenceOppositeOpFunctor, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.restriction_map, CategoryTheory.isPreconnected_op, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ΞΉ, CategoryTheory.Functor.leftAdjointObjIsDefined_iff, CategoryTheory.Functor.IsCoverDense.sheafIso_hom_val, TopCat.Presheaf.stalkFunctor_map_germ_apply', CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, CategoryTheory.Functor.PullbackObjObj.Ο€_iso_of_iso_left_hom, AlgebraicTopology.DoldKan.P_f_naturality, fintypeToFinBoolAlgOp_obj, PresheafOfModules.freeAdjunction_homEquiv, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.Pretriangulated.Opposite.rotate_distinguished_triangle, SSet.Truncated.HomotopyCategory.descOfTruncation_obj_mk, SSet.S.IsUniquelyCodimOneFace.iff, CategoryTheory.Functor.leftOpRightOpEquiv_inverse_obj, CategoryTheory.sheafifyMap_sheafifyLift_assoc, CategoryTheory.Equivalence.op_counitIso, CategoryTheory.CostructuredArrow.well_copowered_costructuredArrow, AlgebraicTopology.DoldKan.MorphComponents.id_b, CategoryTheory.Presheaf.isLocallyInjective_forget, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_invApp, CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf, AlgebraicGeometry.isLocalization_basicOpen_of_qcqs, CategoryTheory.unop_sub, AlgebraicGeometry.Scheme.IdealSheafData.strictMono_ideal, SimplicialObject.Split.cofan_inj_naturality_symm, CommGrpCat.coyoneda_map_app, CategoryTheory.cocones_obj_obj, CategoryTheory.Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp_Ο€_apply, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.Abelian.subobjectIsoSubobjectOp_symm_apply, CategoryTheory.Functor.RepresentableBy.ofIsoObj_homEquiv, CategoryTheory.Functor.op_additive, AlgebraicGeometry.Scheme.Opens.eq_presheaf_map_eqToHom, CategoryTheory.unop_hom_leftUnitor, CategoryTheory.LocalizerMorphism.hasRightResolutions_iff_op, CategoryTheory.Comma.unopFunctorCompFst_hom_app, CategoryTheory.isArtinianObject_iff_isEventuallyConstant, CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app, CategoryTheory.Presheaf.tautologicalCocone_pt, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_functor, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.Functor.CorepresentableBy.coyoneda_homEquiv, SheafOfModules.forgetToSheafModuleCat_obj_val, CategoryTheory.yoneda'_map_val, AlgebraicGeometry.LocallyRingedSpace.evaluation_naturality_apply, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty, SimplexCategory.II_obj, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_appLE, AlgebraicGeometry.IsAffineOpen.fromSpec_toSpecΞ“, SSet.associator_inv_app_apply, AlgebraicGeometry.map_injective_of_isIntegral, CategoryTheory.instIsLeftAdjointFunctorOppositeSheafPresheafToSheaf, CategoryTheory.Functor.map_distinguished_op_exact, AlgebraicGeometry.exists_eq_pow_mul_of_isCompact_of_isQuasiSeparated, AlgebraicGeometry.AffineSpace.homOfVector_appTop_coord, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_map_down, SSet.stdSimplex.nonDegenerateEquiv_symm_apply_coe, AlgebraicGeometry.sourceAffineLocally_morphismRestrict, PresheafOfModules.evaluation_obj, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map, CategoryTheory.OverPresheafAux.map_mkPrecomp_eqToHom, CategoryTheory.Limits.end_.condition_assoc, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerLeft_val, AlgebraicGeometry.Scheme.IsQuasiAffine.isBasis_basicOpen, AlgebraicGeometry.Proj.stalkIso'_symm_mk, CategoryTheory.Sheaf.Ξ“Res_naturality, SimplicialObject.Splitting.cofan_inj_comp_app_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.ofSection_le, CategoryTheory.Limits.preservesFiniteColimits_of_rightOp, CategoryTheory.Limits.preservesFiniteCoproducts_leftOp, AlgebraicGeometry.structureSheafInType.smul_apply, CategoryTheory.prodOpEquiv_counitIso_inv_app, CategoryTheory.unop_associator, CategoryTheory.GrothendieckTopology.diagramNatTrans_comp, CategoryTheory.uliftYonedaFunctor_preservesLimits, AlgebraicGeometry.Scheme.isoSpec_image_zeroLocus, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, CategoryTheory.Limits.cokernelOrderHom_coe, CategoryTheory.Functor.IsRepresentedBy.iff_exists_representableBy, AlgebraicGeometry.PresheafedSpace.GlueData.Ο€_ΞΉInvApp_eq_id, CategoryTheory.Subfunctor.sieveOfSection_apply, CategoryTheory.Limits.preservesColimit_of_rightOp, CategoryTheory.ObjectProperty.essentiallySmall_op_iff, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.Functor.rightOp_map_unop, CategoryTheory.sheafifyLift_id_toSheafify_assoc, AlgebraicGeometry.Scheme.IdealSheafData.ideal_map_of_isAffineHom, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk_assoc, AlgebraicGeometry.isCompact_and_isOpen_iff_finite_and_eq_biUnion_basicOpen, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_inv_app'_assoc, LightProfinite.proj_comp_transitionMap', CategoryTheory.monoidalUnopUnop_Ξ·, CategoryTheory.preadditiveCoyoneda_obj, PresheafOfModules.pushforward_id_comp, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_map, CategoryTheory.DinatTrans.dinaturality, AlgebraicGeometry.IsAffineOpen.toSpecΞ“_isoSpec_inv_assoc, AlgebraicGeometry.LocallyRingedSpace.SpecΞ“Identity_inv_app, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc, CategoryTheory.representablyCoflat_op_iff, CategoryTheory.Functor.leftOpRightOpIso_inv_app, HomologicalComplex.unopFunctor_additive, CategoryTheory.Meq.condition, AlgebraicGeometry.Scheme.AffineZariskiSite.presieveOfSections_eq_ofArrows, CategoryTheory.Sheaf.sheafifyCocone_ΞΉ_app_val, AlgebraicGeometry.Spec.toTop_obj_carrier, CategoryTheory.SimplicialObject.Ξ΄_comp_Οƒ_succ_assoc, AlgebraicGeometry.Scheme.Hom.inv_app, CategoryTheory.NonemptyParallelPairPresentationAux.hg, SSet.RelativeMorphism.map_coe, CategoryTheory.CommSq.LiftStruct.opEquiv_apply, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', CategoryTheory.Adjunction.unop_unit, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.restriction_eq_of_fac, AlgebraicGeometry.RingedSpace.mem_basicOpen, CategoryTheory.Functor.IsLocalization.op, CategoryTheory.Limits.PushoutCocone.unop_snd, CategoryTheory.Square.op_f₃₄, CategoryTheory.isCoseparator_unop_iff, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_obj, AlgebraicGeometry.Scheme.Hom.app_injective, CategoryTheory.Functor.mapPresheaf_obj_presheaf, CategoryTheory.ShortComplex.opcyclesOpIso_inv_naturality_assoc, CategoryTheory.OverPresheafAux.counitAuxAux_hom, CategoryTheory.NatTrans.removeOp_app, CategoryTheory.MorphismProperty.RightFraction.unop_Y', HomologicalComplex.unopEquivalence_counitIso, SSet.Subcomplex.N.notMem, AlgebraicGeometry.Scheme.IdealSheafData.subschemeFunctor_map, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitLeftOp_Ο€_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, Condensed.id_val, AlgebraicGeometry.Scheme.Modules.inv_app, SSet.PtSimplex.MulStruct.Ξ΄_succ_castSucc_map_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Functor.Elements.initialOfRepresentableBy_fst, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_Ο€_assoc, Condensed.locallyConstantIsoFinYoneda_hom_app, AlgebraicTopology.DoldKan.hΟƒ'_naturality, TopCat.Presheaf.ext_iff, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_preimage_zeroLocus, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_two_assoc, CategoryTheory.Functor.leibnizPullback_obj_obj, AlgebraicTopology.DoldKan.P_add_Q_f, PresheafOfModules.evaluation_map, CategoryTheory.linearCoyoneda_obj_obj_isModule, CategoryTheory.ShortComplex.opFunctor_map, SSet.horn.const_val_apply, CategoryTheory.yoneda_obj_isGeneratedBy, CategoryTheory.Functor.sheafPushforwardContinuousComp'_hom_app_val_app, SSet.horn₃₁.desc.multicofork_Ο€_three, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionObj_op, CategoryTheory.Pretriangulated.instIsTriangulatedOppositeUnopUnop, AlgebraicGeometry.AffineScheme.Spec_full, AlgebraicGeometry.nonempty_isColimit_Ξ“_mapCocone, AlgebraicTopology.DoldKan.hΟƒ'_eq', CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv, HomologicalComplex.opInverse_map, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, CategoryTheory.MorphismProperty.RightFraction.op_s, SSet.StrictSegal.isRightKanExtension, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_Ο€, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range, CommRingCat.preservesFilteredColimits_coyoneda, CategoryTheory.Limits.preservesColimitsOfShape_of_rightOp, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, CategoryTheory.Equivalence.sheafCongr.counitIso_inv_app_val_app, CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.iSup_eq, SSet.Truncated.IsStrictSegal.segal, CategoryTheory.unop_whiskerLeft, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, AlgebraicTopology.DoldKan.Ξ“β‚€_obj_termwise_mapMono_comp_PInfty, PresheafOfModules.freeObjDesc_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp_assoc, AlgebraicGeometry.LocallyRingedSpace.comp_c_app, CategoryTheory.sheafSectionsNatIsoEvaluation_inv_app, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isAddCommGroup, CategoryTheory.nerveMap_app_mkβ‚€, CategoryTheory.OverPresheafAux.YonedaCollection.mapβ‚‚_fst, TopCat.Presheaf.presheafEquivOfIso_functor_obj_map, CategoryTheory.NatTrans.unop_app, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_basicOpen_eq, CategoryTheory.Subpresheaf.to_sheafifyLift, CategoryTheory.Limits.preservesLimits_leftOp, AlgebraicGeometry.StructureSheaf.algebraMap_germ_apply, CategoryTheory.unop_sum, SSet.Subcomplex.image_iSup, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, CategoryTheory.Sieve.toUliftFunctor_app_down_coe, CategoryTheory.Functor.homObjFunctor_obj, CategoryTheory.Functor.op_obj, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, AlgebraicGeometry.Scheme.stalkMap_germ, Condensed.instAB4CondensedMod, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionUnitIso, CategoryTheory.Presieve.isSheafFor_ofArrows_iff_bijective_toCompabible, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology_iff_sectionsOfPresieve, CategoryTheory.Equivalence.symmEquivInverse_obj_unitIso_hom, AlgebraicGeometry.IsAffineOpen.isoSpec_inv_ΞΉ, CategoryTheory.Functor.instInitialOppositeRightOpOfFinal, CategoryTheory.Under.opEquivOpOver_inverse_map, SimplicialObject.Splitting.cofan_inj_eq_assoc, PresheafOfModules.Sheafify.mul_smul, AlgebraicGeometry.IsAffineOpen.isoSpec_hom_appTop, CategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_iff_unop, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_inv_eq_germ_assoc, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_inv_app, CategoryTheory.GrothendieckTopology.uliftYoneda_map_val_app_down, CategoryTheory.Limits.FormalCoproduct.evalOpCompInlIsoId_inv_app_app, SimplexCategory.II_Ξ΄, CategoryTheory.Limits.Cofork.op_ΞΉ, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal_basicOpen, CommGrpCat.coyonedaType_obj_obj_coe, CategoryTheory.MorphismProperty.MapFactorizationData.op_p, TopCat.Presheaf.presheafEquivOfIso_inverse_map_app, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΞ“FreeOpensCarrierCarrierCommRingCat, AlgebraicGeometry.RingedSpace.zeroLocus_singleton, TopCat.Presheaf.stalkFunctor_map_germ_assoc, CategoryTheory.Limits.Cocone.extensions_app, CategoryTheory.Limits.IndObjectPresentation.yoneda_F, CommRingCat.preservesColimit_coyoneda_of_finitePresentation, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_fst, CategoryTheory.Functor.IsRepresentedBy.representableBy_homEquiv_apply, PresheafOfModules.instAdditiveFunctorOppositeAbToPresheaf, CategoryTheory.Sheaf.tensorUnit_isSheaf, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_functor, CategoryTheory.Subfunctor.eq_sheafify_iff, CategoryTheory.Adjunction.Quadruple.op_adj₃, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft, CategoryTheory.Retract.op_r, CategoryTheory.orderDualEquivalence_inverse_map, AlgebraicGeometry.essImage_Spec, CategoryTheory.Limits.widePullbackShapeOpEquiv_counitIso, SSet.horn.primitiveTriangle_coe, CategoryTheory.Limits.endFunctor_map, CompHausLike.LocallyConstant.functorToPresheaves_obj_map, CategoryTheory.sheafCompose_obj_val, CategoryTheory.Limits.walkingParallelPairOp_right, CategoryTheory.WithTerminal.opEquiv_functor_map, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_hom_app, PresheafOfModules.zero_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ο„l, CategoryTheory.Limits.opCoproductIsoProduct_inv_comp_ΞΉ, CategoryTheory.CostructuredArrow.projectQuotient_mk, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_inv_app_hom₁, AlgebraicGeometry.Scheme.comp_appLE_assoc, CategoryTheory.hasSeparator_op_iff, AlgebraicGeometry.Scheme.Hom.fromNormalization_app, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_homβ‚‚, CategoryTheory.Limits.coneOfCoconeUnop_pt, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.map_on_summand'_assoc, PresheafOfModules.map_comp_assoc, CategoryTheory.Equalizer.Presieve.Arrows.w, AlgebraicGeometry.Scheme.Hom.eqToHom_app, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.yonedaMon_obj, TopCat.presheafToTypes_obj, CategoryTheory.Functor.unopComp_hom_app, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberCompIso_hom_app, CategoryTheory.Limits.preservesLimits_rightOp, TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete, CategoryTheory.OverPresheafAux.counitForward_val_fst, CategoryTheory.Limits.instHasCoproductOppositeOp, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft_unop, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_yoneda_map, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, AlgebraicGeometry.Scheme.id_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, Alexandrov.projSup_map, CategoryTheory.LocalizerMorphism.instHasRightResolutionsOppositeOpOpOfHasLeftResolutions, CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible.existsUnique_section, AlgebraicGeometry.flat_iff, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, CategoryTheory.Limits.Fork.unop_Ο€, CategoryTheory.MorphismProperty.RightFraction.op_Y', CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, TopCat.Presheaf.SheafConditionEqualizerProducts.res_Ο€_apply, AlgebraicGeometry.Scheme.zeroLocus_map_of_eq, HomologicalComplex.opSymm_X, PresheafOfModules.forgetToPresheafModuleCat_map, AlgebraicGeometry.IsAffineOpen.toSpecΞ“_fromSpec, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ο„r, CategoryTheory.presheafHom_map_app_op_mk_id, CategoryTheory.Limits.preservesColimit_of_unop, Condensed.lanPresheafIso_hom, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk, SSet.degenerate_iff_of_isIso, HomologicalComplex.instHasHomologyObjOppositeSymmUnopFunctorOp, Condensed.discrete_obj, AlgebraicGeometry.IsAffineOpen.fromSpec_primeIdealOf, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp, CategoryTheory.ShortComplex.RightHomologyMapData.unop_Ο†H, CategoryTheory.Limits.IndObjectPresentation.yoneda_ℐ, CategoryTheory.cokernelOpOp_inv, SSet.stdSimplex.face_singleton_compl, PresheafOfModules.instIsRightAdjointPushforwardIdFunctorOppositeRingCat, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_fst, SSet.ΞΉβ‚€_app_fst, CategoryTheory.Functor.IsRightAdjoint.rightOp, SSet.Truncated.spine_injective, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.Abelian.wellPowered_opposite, CategoryTheory.Limits.PushoutCocone.unop_fst, CategoryTheory.isIso_op_iff, AlgebraicGeometry.IsOpenImmersion.lift_app, CategoryTheory.RelCat.opEquivalence_unitIso, CategoryTheory.sheafComposeNatTrans_fac, CategoryTheory.toSheafify_naturality, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ΞΉ, CategoryTheory.Limits.widePushoutShapeOpEquiv_unitIso, CategoryTheory.GrothendieckTopology.yonedaEquiv_apply, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_map_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, AlgebraicGeometry.IsAffineOpen.isoSpec_inv_ΞΉ_assoc, germ_skyscraperPresheafStalkOfSpecializes_hom, AlgebraicGeometry.HasRingHomProperty.iff_of_isAffine, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_obj, SheafOfModules.Finite.evaluationPreservesFiniteLimits, CategoryTheory.shrinkYonedaEquiv_symm_map, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_hom_app, SimplicialObject.Splitting.cofan_inj_epi_naturality, CategoryTheory.map_coyonedaEquiv, CategoryTheory.Limits.PushoutCocone.op_fst, CategoryTheory.Presieve.FamilyOfElements.map_id, CategoryTheory.ShortComplex.LeftHomologyData.op_ΞΉ, CategoryTheory.ShortComplex.RightHomologyData.op_Ο€, AlgebraicGeometry.Scheme.IdealSheafData.le_def, AddCommGrpCat.coyonedaType_map_app, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.ObjectProperty.small_op_iff, CategoryTheory.instIsCardinalAccessibleObjOppositeFunctorTypeUliftCoyonedaOpOfIsCardinalPresentable, SSet.Truncated.Edge.CompStruct.idCompId_simplex, CategoryTheory.Yoneda.obj_map_id, TopCat.Presheaf.isSheaf_of_isOpenEmbedding, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_inv_app, CategoryTheory.Groupoid.invFunctor_obj, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_unop, CategoryTheory.Limits.widePullbackShapeOp_map, CategoryTheory.map_yonedaEquiv', CategoryTheory.opOpEquivalence_functor, CategoryTheory.ShortComplex.quasiIso_opMap_iff, CategoryTheory.Limits.Cowedge.condition, CommMonCat.coyonedaType_map_app, AlgebraicGeometry.isIso_pushoutSection_of_isAffineOpen, SSet.range_eq_iSup_of_isColimit, LightCondensed.instPreservesFiniteProductsOppositeLightProfiniteVal, CategoryTheory.CategoryOfElements.toCostructuredArrow_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionUnitIso, CategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_iff_op, PresheafOfModules.pushforward_comp_id, CategoryTheory.Pretriangulated.triangleOpEquivalence_inverse, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.Limits.walkingParallelPairOpEquiv_inverse, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.MorphismProperty.isomorphisms_op, AlgebraicGeometry.AffineScheme.Ξ“IsEquiv, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right, CategoryTheory.Limits.Ο€_comp_opProductIsoCoproduct_hom, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_map, SSet.Subcomplex.preimage_iInf, CompHausLike.LocallyConstant.adjunction_unit, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_map, CategoryTheory.instFullIndFunctorOppositeTypeInclusion, AlgebraicGeometry.SheafedSpace.Ξ“_map_op, CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceΞ΄_apply, SSet.S.le_def, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot_of_isCompact, classifyingSpaceUniversalCover_obj, AlgebraicGeometry.SheafedSpace.GlueData.ΞΉ_jointly_surjective, CategoryTheory.Comon.ComonToMonOpOpObj_X, CategoryTheory.Presheaf.isLocallyInjective_comp, CategoryTheory.Limits.hasInitial_op_of_hasTerminal, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.instIsIsoInvApp, CategoryTheory.Limits.preservesColimitsOfShape_of_unop, SSet.skeletonOfMono_succ, CategoryTheory.SimplicialObject.Ξ΄_comp_Ξ΄_self'_assoc, CategoryTheory.Square.unop_f₃₄, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, skyscraperPresheaf_map, CategoryTheory.Limits.preservesLimit_rightOp, AlgebraicGeometry.Scheme.IdealSheafData.supportSet_eq_iInter_zeroLocus, CategoryTheory.isSeparator_unop_iff, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm, AlgebraicGeometry.IsAffineOpen.appLE_eq_away_map, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_three_assoc, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app, SSet.PtSimplex.RelStruct.Ξ΄_succ_map_assoc, AlgebraicGeometry.Scheme.Hom.appIso_inv_appLE, CategoryTheory.isCofiltered_op_iff_isFiltered, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, AlgebraicGeometry.Scheme.Modules.map_smul, CategoryTheory.PresheafOfGroups.Cochainβ‚€.mul_apply, AlgebraicGeometry.RingedSpace.mem_basicOpen', CategoryTheory.ShortComplex.op_Xβ‚‚, CategoryTheory.Presheaf.isLocallySurjective_presheafToSheaf_map_iff, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality_assoc, CategoryTheory.Limits.coconeLeftOpOfCone_pt, CategoryTheory.ShortComplex.leftHomologyMap'_op, CategoryTheory.shrinkYonedaEquiv_shrinkYoneda_map, CategoryTheory.ShortComplex.instHasRightHomologyOppositeOpOfHasLeftHomology, AlgebraicGeometry.Scheme.mem_basicOpen, CategoryTheory.enrichedNatTransYoneda_map_app, CategoryTheory.yonedaGrp_naturality, CategoryTheory.WithTerminal.opEquiv_inverse_map, CategoryTheory.Functor.PullbackObjObj.isPullback, Subobject.presheaf_map, CategoryTheory.constantPresheafAdj_unit_app, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_Ο€, CategoryTheory.Limits.preservesColimitsOfSize_of_leftOp, CategoryTheory.Presheaf.freeYoneda_obj, CategoryTheory.Equivalence.symmEquivInverse_map_app, SSet.StrictSegal.spineToSimplex_vertex, AlgebraicGeometry.SheafedSpace.comp_c_app', CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_inv_app_assoc, CategoryTheory.ShiftedHom.opEquiv'_add_symm, CategoryTheory.Functor.functorHomEquiv_symm_apply_app_app, SSet.Truncated.Edge.tgt_eq, SSet.stdSimplex.isoNerve_inv_app_apply, CategoryTheory.colimitYonedaHomEquiv_Ο€_apply, CategoryTheory.Enriched.FunctorCategory.diagram_obj_obj, CategoryTheory.Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap, AlgebraicGeometry.SpecMap_Ξ“SpecIso_inv_toSpecΞ“_assoc, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit_assoc, AlgebraicGeometry.IsOpenImmersion.map_Ξ“Iso_inv_apply, AlgebraicGeometry.PresheafedSpace.ofRestrict_c_app, CategoryTheory.Limits.SequentialProduct.functorMap_commSq, CategoryTheory.Sheaf.isSheaf_yoneda_obj, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecCApp_iff, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.ofRestrict_invApp_apply, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.uliftCoyonedaEquiv_comp, CategoryTheory.Functor.IsCoverDense.Types.naturality_assoc, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetObj_map, CompHausLike.LocallyConstant.functorToPresheaves_obj_obj, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit, CategoryTheory.Limits.Cone.op_ΞΉ, CategoryTheory.Limits.hasColimit_op_of_hasLimit, CategoryTheory.yonedaEquiv_symm_app_apply, AlgebraicGeometry.LocallyRingedSpace.Ξ“_obj, SSet.Truncated.StrictSegal.spineToSimplex_map, CategoryTheory.MorphismProperty.ContainsIdentities.of_unop, AlgebraicGeometry.Spec.map_app, CategoryTheory.preservesColimitsOfShape_of_isCardinalPresentable, SSet.PtSimplex.MulStruct.Ξ΄_castSucc_castSucc_map, CategoryTheory.instIsClosedUnderColimitsOfShapeFunctorOppositeTypeIsIndObjectOfIsFiltered, ContinuousMap.instPreservesFiniteProductsOppositeTopCatYonedaPresheaf', CategoryTheory.Limits.ΞΉ_comp_colimitUnopIsoOpLimit_hom, AlgebraicGeometry.Scheme.Spec_fromSpecStalk, CategoryTheory.Functor.op_map, PresheafOfModules.pushforwardβ‚€_obj_map, CategoryTheory.NatTrans.unop_comp, SheafOfModules.unitHomEquiv_apply_coe, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.preservesFiniteLimits_embedding, CategoryTheory.Limits.widePullbackShapeOpEquiv_unitIso, CategoryTheory.preadditiveYonedaObj_map, AlgebraicGeometry.IsAffineOpen.ideal_ext_iff, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο€, CategoryTheory.Sheaf.image_val, CategoryTheory.whiskering_preadditiveCoyoneda, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc, typeToBoolAlgOp_obj, CategoryTheory.ShiftedHom.opEquiv_symm_comp, CategoryTheory.Coyoneda.ULiftCoyoneda.instFaithfulOppositeFunctorTypeUliftCoyoneda, CategoryTheory.ShortComplex.cyclesOpIso_hom_naturality_assoc, CategoryTheory.Square.isPushout_iff_op_map_yoneda_isPullback, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.Coyoneda.coyoneda_faithful, AlgebraicGeometry.tilde.toOpen_map_app, CategoryTheory.Limits.compYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanMapIso_hom, CategoryTheory.yonedaEquiv_comp, CategoryTheory.OverPresheafAux.counitForward_naturalityβ‚‚, CategoryTheory.ShortComplex.HomologyMapData.unop_left, AddCommGrpCat.coyoneda_obj_map, SSet.skeleton_zero, CategoryTheory.Comon.ComonToMonOpOpObj_mon_one, AlgebraicGeometry.IsAffineOpen.primeIdealOf_genericPoint, ChainComplex.linearYonedaObj_X, CategoryTheory.Limits.parallelPairOpIso_hom_app_zero, CategoryTheory.Functor.IsCoverDense.Types.naturality, CategoryTheory.LocalizerMorphism.isLeftDerivabilityStructure_iff_op, AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ, AlgebraicGeometry.IsAffineOpen.mem_ideal_iff, AlgebraicGeometry.Scheme.toSpecΞ“_base, AlgebraicGeometry.Smooth.iff_forall_exists_isStandardSmooth

CategoryTheory.CategoryStruct

Definitions

NameCategoryTheorems
opposite πŸ“–CompOp
231 mathmath: CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_hom_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, CategoryTheory.ShortComplex.homologyOpIso_hom_naturality, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.op_comp, CategoryTheory.eqToHom_comp_homOfLE_op, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, AlgebraicGeometry.Scheme.restrictFunctorΞ“_inv_app, CategoryTheory.Limits.parallelPairOpIso_inv_app_zero, CategoryTheory.ObjectProperty.unop_ofObj, CategoryTheory.Pretriangulated.shiftFunctorZero_op_inv_app, CategoryTheory.Join.inclRightCompOpEquivInverse_inv_app_op, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_assoc, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_inv_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_apply, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, TopCat.Presheaf.pushforwardToOfIso_app, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.Pretriangulated.shiftFunctorAdd'_op_hom_app, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_inv_app, CategoryTheory.monoidalOpOp_Ξ΄, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_homβ‚‚, HomologicalComplex.opcyclesOpIso_inv_naturality, HomologicalComplex.extend.XOpIso_hom_d_op, CategoryTheory.Limits.parallelPairOpIso_inv_app_one, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_map, CategoryTheory.ShortComplex.op_pOpcycles_opcyclesOpIso_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.Pretriangulated.commShiftIso_opOp_inv_app, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_snd, CategoryTheory.image_ΞΉ_op_comp_imageUnopOp_hom, CategoryTheory.Limits.pushoutIsoUnopPullback_inv_fst, CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, PresheafOfModules.map_comp_apply, CategoryTheory.ShortComplex.leftHomologyMap_op, CategoryTheory.Limits.opCoproductIsoProduct'_hom_comp_proj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, CategoryTheory.ShortComplex.homologyOpIso_inv_naturality, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, CategoryTheory.Pretriangulated.shiftFunctorAdd'_op_inv_app, CategoryTheory.ShortComplex.cyclesOpIso_hom_naturality, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.ObjectProperty.op_monotone_iff, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.homOfLE_op_comp_eqToHom_assoc, CategoryTheory.Pseudofunctor.DescentData.iso_inv, CategoryTheory.Limits.parallelPairOpIso_hom_app_one, TopCat.Presheaf.pushforwardEq_hom_app, CategoryTheory.Limits.opCoproductIsoProduct_hom_comp_Ο€, CategoryTheory.OverPresheafAux.YonedaCollection.mapβ‚‚_snd, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_apply, CategoryTheory.ShortComplex.homologyMap'_op, CategoryTheory.Limits.opParallelPairIso_hom_app_zero, CategoryTheory.ObjectProperty.op_singleton, CategoryTheory.Pseudofunctor.DescentData.instIsIsoΞ±CategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.OverPresheafAux.counitForward_val_snd, CategoryTheory.Limits.opParallelPairIso_hom_app_one, CategoryTheory.Limits.opCoproductIsoProduct'_inv_comp_inj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.cokernel.Ο€_unop, HomologicalComplex.opcyclesOpIso_hom_toCycles_op, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, CategoryTheory.factorThruImage_comp_imageUnopOp_inv, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ΞΉ, CategoryTheory.ShortComplex.opcyclesOpIso_hom_naturality, CategoryTheory.unop_comp, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_invApp, finGaloisGroupMap.map_id, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.op_id_unop, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', CategoryTheory.Limits.opProductIsoCoproduct'_comp_self, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.op_comp_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app, CategoryTheory.ShortComplex.cyclesOpIso_inv_naturality, CategoryTheory.kernel.ΞΉ_unop, CategoryTheory.ObjectProperty.op_ofObj, CategoryTheory.monoidalOpOp_ΞΌ, HomologicalComplex.cyclesOpIso_inv_naturality, AlgebraicGeometry.Scheme.restrictFunctorΞ“_hom_app, HomologicalComplex.opcyclesOpIso_hom_naturality, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_map_fiber, CategoryTheory.Pretriangulated.shiftFunctorZero_op_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.Limits.pullbackIsoOpPushout_inv_fst, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, CategoryTheory.monoidalOpOp_Ξ·, CategoryTheory.Limits.pullbackIsoOpPushout_inv_snd, HomologicalComplex.extend_op_d, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, CategoryTheory.Limits.Ο€_comp_colimitOpIsoOpLimit_inv, CochainComplex.homotopyOp_hom_eq, CategoryTheory.Join.inclRightCompOpEquivInverse_hom_app_op, CategoryTheory.Functor.op_commShiftIso_inv_app, PresheafOfModules.map_comp, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.Functor.const.opObjOp_hom_app, CategoryTheory.ShortComplex.opcyclesOpIso_inv_naturality, Alexandrov.lowerCone_Ο€_app, CategoryTheory.Limits.ΞΉ_comp_colimitRightOpIsoUnopLimit_hom, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Join.inclLeftCompOpEquivInverse_inv_app_op, AlgebraicGeometry.IsAffineOpen.fromSpec_app_self_apply, HomologicalComplex.cyclesOpIso_hom_naturality, CategoryTheory.eqToHom_op, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, CategoryTheory.Functor.const.opObjOp_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.monoidalOpOp_Ξ΅, CategoryTheory.ShortComplex.rightHomologyMap_op, ContinuousMap.piComparison_fac, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_apply, CategoryTheory.ObjectProperty.op_monotone, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, CategoryTheory.yonedaPairing_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, CategoryTheory.ObjectProperty.unop_monotone_iff, CategoryTheory.OverPresheafAux.YonedaCollection.mk_snd, CategoryTheory.Join.inclLeftCompOpEquivInverse_hom_app_op, CategoryTheory.unop_comp_assoc, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, CategoryTheory.Functor.shift_map_op, CategoryTheory.Limits.ΞΉ_comp_colimitOpIsoOpLimit_hom, CategoryTheory.Pretriangulated.shiftFunctor_op_map, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, CategoryTheory.Pretriangulated.commShiftIso_opOp_hom_app, CategoryTheory.unop_id_op, CategoryTheory.imageUnopOp_hom_comp_image_ΞΉ, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct_hom, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.homOfLE_op_comp_eqToHom, CategoryTheory.Limits.Ο€_comp_colimitRightOpIsoUnopLimit_inv, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.ShiftedHom.opEquiv'_symm_comp, CategoryTheory.MorphismProperty.instRespectsLeftOppositeOpOfRespectsRight, PresheafOfModules.map_id, CategoryTheory.ShortComplex.homologyMap_op, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_Ο€, CategoryTheory.yonedaEvaluation_map_down, CategoryTheory.Limits.fst_opProdIsoCoprod_hom, CategoryTheory.MorphismProperty.instRespectsRightOppositeOpOfRespectsLeft, AlgebraicGeometry.PresheafedSpace.congr_app, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, AlgebraicGeometry.PresheafedSpace.id_c_app, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, HomologicalComplex.fromOpcycles_op_cyclesOpIso_inv, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.Limits.proj_comp_opProductIsoCoproduct'_hom, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CompHausLike.LocallyConstant.incl_comap, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, AlgebraicGeometry.SheafedSpace.congr_hom_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, AlgebraicGeometry.PresheafedSpace.GlueData.ΞΉInvApp_Ο€, CategoryTheory.eqToHom_comp_homOfLE_op_assoc, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.Pseudofunctor.DescentData.hom_self, CategoryTheory.ShortComplex.opcyclesOpIso_hom_toCycles_op, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CategoryTheory.Functor.op_commShiftIso_hom_app, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_hom_app, CategoryTheory.Limits.opProductIsoCoproduct_inv_comp_lift, TopCat.Presheaf.toPushforwardOfIso_app, CategoryTheory.ShortComplex.cyclesOpIso_inv_op_iCycles, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_invApp, CategoryTheory.OverPresheafAux.YonedaCollection.map₁_snd, CategoryTheory.WithInitial.opEquiv_inverse_map, CategoryTheory.Limits.opParallelPairIso_inv_app_zero, CategoryTheory.Limits.opParallelPairIso_inv_app_one, AlgebraicGeometry.SheafedSpace.congr_app, CategoryTheory.Limits.snd_opProdIsoCoprod_hom, CategoryTheory.imageUnopOp_inv_comp_op_factorThruImage, HomologicalComplex.homologyOp_hom_naturality, CategoryTheory.ShortComplex.fromOpcycles_op_cyclesOpIso_inv, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_assoc, CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_invApp, finGaloisGroupMap.map_comp, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.OverPresheafAux.map_mkPrecomp_eqToHom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, CategoryTheory.eqToHom_unop, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, CategoryTheory.op_comp_unop, CategoryTheory.Limits.opCoproductIsoProduct_inv_comp_ΞΉ, PresheafOfModules.map_comp_assoc, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ΞΉ, CategoryTheory.unop_id, CategoryTheory.op_id, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.Limits.Ο€_comp_opProductIsoCoproduct_hom, CategoryTheory.ObjectProperty.unop_singleton, CategoryTheory.WithTerminal.opEquiv_inverse_map, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_Ο€, CategoryTheory.ShiftedHom.opEquiv'_add_symm, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.Limits.parallelPairOpIso_hom_app_zero

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
leftOp πŸ“–CompOp
8 mathmath: leftOp_unitIso_hom_app, leftOp_unitIso_inv_app, leftOp_functor_obj, leftOp_counitIso_inv_app, leftOp_inverse_map, leftOp_counitIso_hom_app, leftOp_inverse_obj, leftOp_functor_map
op πŸ“–CompOp
38 mathmath: leftOp_unitIso_hom_app, sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, sheafCongr.counitIso_hom_app_val_app, sheafCongrPreregular_counitIso_inv_app_val_app, rightOp_counitIso_inv_app, leftOp_unitIso_inv_app, leftOp_counitIso_inv_app, sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, rightOp_unitIso_hom_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, sheafCongr.unitIso_hom_app_val_app, sheafCongrPreregular_counitIso_hom_app_val_app, sheafCongrPrecoherent_counitIso_inv_app_val_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, op_functor, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, sheafCongrPrecoherent_unitIso_inv_app_val_app, rightOp_counitIso_hom_app, sheafCongrPrecoherent_unitIso_hom_app_val_app, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, rightOp_unitIso_inv_app, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, leftOp_counitIso_hom_app, CategoryTheory.regularTopology.equalizerCondition_iff_of_equivalence, TopCat.Presheaf.presheafEquivOfIso_functor_map_app, op_unitIso, op_inverse, sheafCongrPreregular_unitIso_inv_app_val_app, sheafCongr.unitIso_inv_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, op_counitIso, sheafCongr.counitIso_inv_app_val_app, TopCat.Presheaf.presheafEquivOfIso_inverse_map_app
rightOp πŸ“–CompOp
8 mathmath: rightOp_counitIso_inv_app, rightOp_functor_map, rightOp_inverse_map, rightOp_unitIso_hom_app, rightOp_inverse_obj, rightOp_functor_obj, rightOp_counitIso_hom_app, rightOp_unitIso_inv_app
unop πŸ“–CompOp
4 mathmath: unop_counitIso, unop_inverse, unop_unitIso, unop_functor

Theorems

NameKindAssumesProvesValidatesDepends On
leftOp_counitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
inverse
CategoryTheory.opOpEquivalence
op
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
leftOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftOp_counitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
inverse
CategoryTheory.opOpEquivalence
op
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
leftOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
leftOp_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
functor
leftOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
β€”β€”
leftOp_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
functor
leftOp
Opposite.unop
β€”β€”
leftOp_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
inverse
leftOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.op
β€”β€”
leftOp_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
inverse
leftOp
Opposite.op
β€”β€”
leftOp_unitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
op
CategoryTheory.opOpEquivalence
inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
leftOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
leftOp_unitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
functor
op
CategoryTheory.opOpEquivalence
inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
leftOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
op_counitIso πŸ“–mathematicalβ€”counitIso
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatIso.op
β€”β€”
op_functor πŸ“–mathematicalβ€”functor
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Functor.op
β€”β€”
op_inverse πŸ“–mathematicalβ€”inverse
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Functor.op
β€”β€”
op_unitIso πŸ“–mathematicalβ€”unitIso
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.NatIso.op
β€”β€”
rightOp_counitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
inverse
op
symm
CategoryTheory.opOpEquivalence
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
rightOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
rightOp_counitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
op
symm
CategoryTheory.opOpEquivalence
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
rightOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
rightOp_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
functor
rightOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.op
β€”β€”
rightOp_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
functor
rightOp
Opposite.op
β€”β€”
rightOp_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
inverse
rightOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
β€”β€”
rightOp_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
inverse
rightOp
Opposite.unop
β€”β€”
rightOp_unitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
functor
symm
CategoryTheory.opOpEquivalence
op
inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
rightOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
rightOp_unitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
functor
symm
CategoryTheory.opOpEquivalence
op
inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
rightOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
unop_counitIso πŸ“–mathematicalβ€”counitIso
unop
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatIso.unop
β€”β€”
unop_functor πŸ“–mathematicalβ€”functor
unop
CategoryTheory.Functor.unop
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_inverse πŸ“–mathematicalβ€”inverse
unop
CategoryTheory.Functor.unop
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_unitIso πŸ“–mathematicalβ€”unitIso
unop
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.NatIso.unop
β€”β€”

CategoryTheory.Functor

Definitions

NameCategoryTheorems
leftOp πŸ“–CompOp
106 mathmath: CategoryTheory.Adjunction.leftOp_unit, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ€_hom_app, CategoryTheory.NatTrans.removeLeftOp_id, leftOpRightOpEquiv_counitIso_inv_app_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, CategoryTheory.simplicialCosimplicialEquiv_inverse_map, CategoryTheory.Limits.preservesLimitsOfShape_leftOp, CategoryTheory.Limits.hasLimit_leftOp_of_hasColimit, CategoryTheory.NatTrans.leftOp_app, CategoryTheory.Comma.opEquiv_counitIso, CategoryTheory.Limits.isColimitCoconeLeftOpOfCone_desc, CategoryTheory.Limits.coconeOfConeLeftOp_pt, CategoryTheory.Limits.colimitYonedaHomIsoLimit'_Ο€_apply, CategoryTheory.Limits.Ο€_comp_colimitLeftOpIsoUnopLimit_inv, leftOp_obj, rightOpLeftOpIso_hom_app, CategoryTheory.Limits.isLimitOfCoconeOfConeLeftOp_lift, leftOp_faithful, const.opObjUnop_hom_app, instInitialOppositeLeftOpOfFinal, leftOpId_hom_app, CategoryTheory.Limits.preservesColimit_leftOp, leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.NatTrans.removeLeftOp_app, CategoryTheory.Limits.preservesLimit_leftOp, CategoryTheory.NatTrans.leftOp_id, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, CategoryTheory.Limits.preservesLimitsOfSize_leftOp, CategoryTheory.Limits.coneOfCoconeLeftOp_Ο€_app, CategoryTheory.Limits.isColimitOfConeOfCoconeLeftOp_desc, leftOpRightOpIso_hom_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, CategoryTheory.Limits.Ο€_comp_colimitLeftOpIsoUnopLimit_inv_assoc, CategoryTheory.Limits.preservesFiniteLimits_leftOp, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_c_naturality, CategoryTheory.Limits.isLimitOfCoconeLeftOpOfCone_lift, CategoryTheory.Limits.preservesFiniteColimits_leftOp, CategoryTheory.ComposableArrows.opEquivalence_inverse_obj, CategoryTheory.Limits.preservesFiniteProducts_leftOp, CategoryTheory.Limits.coneOfCoconeLeftOp_pt, rightOpLeftOpIso_inv_app, rightOp_leftOp_eq, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.MorphismProperty.IsInvertedBy.leftOp, leftOpId_inv_app, CategoryTheory.Limits.preservesColimits_leftOp, leftOpRightOpEquiv_inverse_map, leftOpRightOpEquiv_unitIso_hom_app, IsLeftAdjoint.leftOp, leftOp_full, leftOp_additive, CategoryTheory.Comma.opFunctorCompSnd_hom_app, CategoryTheory.Limits.coneLeftOpOfCocone_Ο€_app, AlgebraicGeometry.PresheafedSpace.colimit_presheaf, CategoryTheory.Adjunction.leftOp_counit, CategoryTheory.Limits.preservesColimitsOfSize_leftOp, leftOpComp_inv_app, CategoryTheory.Comma.opFunctorCompFst_hom_app, CategoryTheory.Comma.opFunctorCompFst_inv_app, IsRightAdjoint.leftOp, CategoryTheory.simplicialCosimplicialEquiv_inverse_obj, leftOpRightOpEquiv_counitIso_hom_app_app, CategoryTheory.Limits.isColimitOfConeLeftOpOfCocone_desc, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.Limits.coneLeftOpOfCocone_pt, const.opObjUnop_inv_app, CategoryTheory.Comma.opEquiv_unitIso, CategoryTheory.Limits.hasColimit_leftOp_of_hasLimit, CategoryTheory.NatTrans.leftOpWhiskerRight, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_Ο€, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, CategoryTheory.Limits.isLimitConeLeftOpOfCocone_lift, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, CategoryTheory.Limits.isLimitConeOfCoconeLeftOp_lift, CategoryTheory.Limits.coconeLeftOpOfCone_ΞΉ_app, CategoryTheory.NatTrans.leftOpWhiskerRight_assoc, leftOpComp_hom_app, CategoryTheory.Limits.preservesColimitsOfShape_leftOp, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, CategoryTheory.Comma.opFunctorCompSnd_inv_app, instIsEquivalenceOppositeLeftOp, CategoryTheory.Comma.opEquiv_inverse, instFinalOppositeLeftOpOfInitial, CategoryTheory.Limits.coconeOfConeLeftOp_ΞΉ_app, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, leftOp_map, CategoryTheory.Presheaf.coconeOfRepresentable_ΞΉ_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ€_inv_app, CategoryTheory.Limits.isColimitCoconeOfConeLeftOp_desc, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ΞΉ_assoc, CategoryTheory.Limits.ΞΉ_comp_colimitLeftOpIsoUnopLimit_hom_assoc, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_inv_comp_Ο€_assoc, CategoryTheory.Limits.ΞΉ_comp_colimitLeftOpIsoUnopLimit_hom, CategoryTheory.Limits.limitLeftOpIsoUnopColimit_hom_comp_ΞΉ, CategoryTheory.NatTrans.leftOp_comp, instEssSurjOppositeLeftOp, leftOpRightOpEquiv_inverse_obj, CategoryTheory.Limits.preservesFiniteCoproducts_leftOp, leftOpRightOpIso_inv_app, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitLeftOp_Ο€_apply, CategoryTheory.Limits.preservesLimits_leftOp, AlgebraicGeometry.PresheafedSpace.colimitCocone_ΞΉ_app_c, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_inverse, CategoryTheory.Limits.coconeLeftOpOfCone_pt
leftOpComp πŸ“–CompOp
4 mathmath: leftOpComp_inv_app, CategoryTheory.NatTrans.leftOpWhiskerRight, CategoryTheory.NatTrans.leftOpWhiskerRight_assoc, leftOpComp_hom_app
leftOpId πŸ“–CompOp
2 mathmath: leftOpId_hom_app, leftOpId_inv_app
leftOpRightOpEquiv πŸ“–CompOp
14 mathmath: CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, leftOpRightOpEquiv_functor_obj_map, leftOpRightOpEquiv_counitIso_inv_app_app, leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, leftOpRightOpEquiv_functor_obj_obj, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, leftOpRightOpEquiv_inverse_map, leftOpRightOpEquiv_unitIso_hom_app, leftOpRightOpEquiv_counitIso_hom_app_app, leftOpRightOpEquiv_functor_map_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, leftOpRightOpEquiv_inverse_obj
leftOpRightOpIso πŸ“–CompOp
2 mathmath: leftOpRightOpIso_hom_app, leftOpRightOpIso_inv_app
op πŸ“–CompOp
644 mathmath: CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, FullyFaithful.homNatIsoMaxRight_inv_app, PresheafOfModules.instIsRightAdjointPushforwardCompFunctorOppositeRingCatWhiskerLeftOp, CategoryTheory.Adjunction.compUliftCoyonedaIso_hom_app_app_down, smoothSheafCommRing.ΞΉ_forgetStalk_inv, CategoryTheory.Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, CategoryTheory.Equivalence.preregular_isSheaf_iff, CategoryTheory.preservesFiniteLimits_iff_lan_preservesFiniteLimits, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_hom_app, CategoryTheory.Localization.isLocalization_op, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, LightProfinite.Extend.functorOp_obj, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_Ο€, LightCondensed.lanPresheafIso_hom, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app, CategoryTheory.regularTopology.equalizerCondition_precomp_of_preservesPullback, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, AlgebraicGeometry.LocallyRingedSpace.Ξ“_def, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Comma.opFunctor_obj, opUnopIso_hom_app, CategoryTheory.Localization.isoOfHom_unop, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryTheory.Limits.Cone.unop_ΞΉ, Profinite.Extend.cocone_pt, mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₁, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_Ο€_app, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, CategoryTheory.MorphismProperty.LeftFraction.op_map, AlgebraicGeometry.Scheme.restrictFunctorΞ“_inv_app, CategoryTheory.Limits.ΞΉ_comp_colimitOpIsoOpLimit_hom_assoc, CategoryTheory.lan_preservesFiniteLimits_of_flat, CategoryTheory.Limits.parallelPairOpIso_inv_app_zero, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, Profinite.Extend.functorOp_map, CategoryTheory.NatIso.op_rightUnitor, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_inverse, unopOpIso_inv_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_naturality, CategoryTheory.Limits.preservesFiniteLimits_op, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_inverse, CategoryTheory.Pretriangulated.shiftFunctorZero_op_inv_app, CategoryTheory.Join.inclRightCompOpEquivInverse_inv_app_op, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_assoc, IsLeftAdjoint.op, FullyFaithful.homNatIsoMaxRight_hom_app_down, CategoryTheory.Adjunction.compCoyonedaIso_inv_app_app, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, LightCondensed.isoFinYoneda_inv_app, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CondensedMod.isDiscrete_tfae, smoothSheafCommRing.ΞΉ_evalHom_apply, commShiftOp_iso_eq, CategoryTheory.Limits.PushoutCocone.unop_Ο€_app, CategoryTheory.Equivalence.precoherent_isSheaf_iff_of_essentiallySmall, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_inv_app, OneHypercoverDenseData.isSheaf_iff, CategoryTheory.Limits.opCompYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, IsCoverDense.restrictHomEquivHom_naturality_left_symm_assoc, CategoryTheory.Limits.Cocone.unop_Ο€, LightCondensed.finYoneda_map, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_Ο€_apply, cones_map_app, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ΞΉ_assoc, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, CategoryTheory.IsFiltered.iff_nonempty_limit, CategoryTheory.Comma.opEquiv_counitIso, skyscraperPresheafCocone_pt, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as, AlgebraicGeometry.AffineScheme.instIsEquivalenceOppositeCommRingCatOpRightOpΞ“, IsCoverDense.isoOver_hom_app, FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, opComp_inv_app, smoothSheaf.ΞΉ_evalHom_apply, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, TopCat.Presheaf.pushforwardToOfIso_app, CategoryTheory.Pretriangulated.shiftFunctorAdd'_op_hom_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, CategoryTheory.Adjunction.compYonedaIso_hom_app_app, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app_assoc, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_inv_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, CategoryTheory.NatIso.op_trans, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, CategoryTheory.Limits.parallelPairOpIso_inv_app_one, LightProfinite.Extend.cocone_ΞΉ_app, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_map, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_naturality, Condensed.lanPresheafExt_inv, CategoryTheory.NatIso.op_isoWhiskerLeft, PresheafOfModules.pushforwardβ‚€_obj_obj_carrier, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app, imageSieve_eq_imageSieve, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.liftHom_fac_assoc, CategoryTheory.Pretriangulated.commShiftIso_opOp_inv_app, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.presheafHom_naturality, CategoryTheory.Presheaf.isLocallySurjective_whisker, rightOpComp_hom_app, rightAdjointObjIsDefined_iff, CategoryTheory.Comma.opFunctor_map, IsCoverDense.Types.appHom_valid_glue, SSet.OneTruncationβ‚‚.ofNerveβ‚‚.natIso_inv_app_obj_obj, CategoryTheory.Adjunction.Triple.op_adj₁, mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₃, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_inv_app_assoc, FullyFaithful.homNatIso_inv_app_down, opId_hom_app, PresheafOfModules.pushforward_map_app_apply', shift_map_op_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_Ο€_app, opUnopIso_inv_app, IsCoverDense.Types.pushforwardFamily_def, CategoryTheory.Adjunction.Quadruple.op_rightTriple, CategoryTheory.Pretriangulated.commShiftIso_opOp_hom_app_assoc, instEssSurjOppositeOp, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, smoothSheaf.ΞΉ_evalHom_assoc, CategoryTheory.Pretriangulated.shiftFunctorAdd'_op_inv_app, IsCoverDense.sheafHom_eq, sheafPushforwardContinuousNatTrans_app_val, CategoryTheory.Adjunction.Quadruple.op_leftTriple, CategoryTheory.NatTrans.op_id, instFaithfulOppositeOp, CategoryTheory.Limits.spanOp_hom_app, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο€_assoc, Profinite.Extend.functorOp_obj, IsCoverDense.restrictHomEquivHom_naturality_right_symm, sheafPushforwardContinuous_map_val_app, CategoryTheory.Limits.preservesLimitsOfSize_op, Condensed.finYoneda_map, mapCoconeOp_inv_hom, CategoryTheory.Limits.Cocone.op_pt, CategoryTheory.NatTrans.op_whiskerRight_assoc, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, CategoryTheory.Adjunction.compPreadditiveYonedaIso_inv_app_app_apply, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.liftHom_fac, map_opShiftFunctorEquivalence_unitIso_inv_app_unop, TopCat.Presheaf.pushforward_map_app, AlgebraicGeometry.Scheme.Hom.coequifibered_normalizationDiagramMap, TopologicalSpace.OpenNhds.op_map_id_obj, IsCoverDense.restrictHomEquivHom_naturality_left, HomologicalComplex.cyclesOpNatIso_inv_app, CategoryTheory.preadditiveYonedaMap_app, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app', CategoryTheory.Enriched.FunctorCategory.diagram_map_app, CategoryTheory.Adjunction.compUliftCoyonedaIso_inv_app_app_down, CategoryTheory.presheafHom_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_Ο€_app, whiskerLeft_obj_map_bijective_of_isCoverDense, CategoryTheory.Limits.parallelPairOpIso_hom_app_one, IsCoverDense.sheafHom_restrict_eq, CategoryTheory.Limits.PullbackCone.op_ΞΉ_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, TopCat.Presheaf.pushforwardEq_hom_app, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_naturality_assoc, CategoryTheory.Adjunction.Triple.op_rightToLeft, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο€_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_apply, CategoryTheory.instRepresentablyFlatOppositeOpOfRepresentablyCoflat, CategoryTheory.Equivalence.sheafCongrPreregular_functor_map_val_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, TopCat.Sheaf.extend_hom_app, CategoryTheory.Limits.opParallelPairIso_hom_app_zero, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso, PresheafOfModules.pushforwardβ‚€_obj_obj_isAddCommGroup, CategoryTheory.Adjunction.Triple.op_adjβ‚‚, CategoryTheory.NatTrans.removeOp_id, CategoryTheory.Localization.isoOfHom_op_inv, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, CategoryTheory.NatTrans.rightOpWhiskerRight, CategoryTheory.Presheaf.isLocallyInjective_whisker, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_map_val_app, AlgebraicGeometry.Scheme.Ξ“_def, CategoryTheory.presheafHom_map_app, CategoryTheory.Limits.opParallelPairIso_hom_app_one, CategoryTheory.Limits.yonedaCompLimIsoCocones_hom_app_app, CategoryTheory.Limits.instHasColimitDiscreteOppositeCompInverseOppositeOpFunctor, CategoryTheory.Limits.preservesLimitsOfShape_op, mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₁, smoothSheafCommRing.ΞΉ_evalHom, CategoryTheory.representablyFlat_op_iff, AlgebraicGeometry.Scheme.Modules.restrictFunctorComp_hom_app_app, CategoryTheory.Limits.preservesColimitsOfSize_op, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.NatIso.op_isoWhiskerRight, AlgebraicGeometry.Scheme.Modules.restrictFunctorComp_inv_app_app, CategoryTheory.Presieve.IsSheafFor.comp_iff_of_preservesPairwisePullbacks, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_map_val_app, CategoryTheory.Presheaf.restrictedULiftYoneda_map_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_naturality_assoc, CategoryTheory.Limits.spanOp_inv_app, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, IsCoverDense.restrictHomEquivHom_naturality_left_assoc, map_shift_unop, IsCoverDense.presheafIso_hom_app, instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, op_commShiftIso_hom_app_assoc, FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, PresheafOfModules.pullback_assoc, CategoryTheory.Limits.opSpan_hom_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_obj, CategoryTheory.NatTrans.op_whiskerRight, AlgebraicGeometry.Ξ“Spec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, CategoryTheory.instRepresentablyCoflatOppositeOpOfRepresentablyFlat, CategoryTheory.NatTrans.op_comp_assoc, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, Condensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.NatIso.op_symm, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_hom_app_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_invApp, CategoryTheory.Limits.opCompYonedaSectionsEquiv_apply_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_naturality_assoc, TopologicalSpace.Opens.op_map_id_obj, op_iff, CategoryTheory.GrothendieckTopology.W_inverseImage_whiskeringLeft, initial_op_of_final, CategoryTheory.TwoSquare.guitartExact_op_iff, SSet.Truncated.rightExtensionInclusion_right_as, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.NatTrans.op_whiskerLeft_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.Scheme.Hom.appIso_inv_naturality, CategoryTheory.Limits.Ο€_comp_colimitOpIsoOpLimit_inv_assoc, LightCondensed.isoLocallyConstantOfIsColimit_inv, AlgebraicGeometry.Scheme.AffineZariskiSite.coequifibered_iff_forall_isLocalizationAway, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_inv_eq_germ_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_hom_app_assoc, CategoryTheory.cosimplicialSimplicialEquiv_functor_map_app, CategoryTheory.Presheaf.isLocallyInjective_whisker_iff, CategoryTheory.Cat.opFunctor_map, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.Limits.instHasLimitOppositeDiscreteOpFunctor, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_inv_app, CategoryTheory.Limits.opCospan_hom_app, CategoryTheory.Limits.preservesFiniteColimits_op, CategoryTheory.lan_preservesFiniteLimits_of_preservesFiniteLimits, unopOpIso_hom_app, AlgebraicGeometry.Ξ“Spec.unop_locallyRingedSpaceAdjunction_counit_app', op_comp_isSheaf_of_types, CategoryTheory.Enriched.FunctorCategory.enrichedComp_Ο€_assoc, CategoryTheory.StructuredArrow.toCostructuredArrow_map, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, CategoryTheory.NatTrans.equifibered_op_iff, IsCoverDense.Types.appHom_restrict, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_hom_eq_germ_apply, CategoryTheory.Comma.unopFunctor_obj, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_Ο€_assoc, CategoryTheory.Pretriangulated.Opposite.commShift_natTrans_op_int, Condensed.isoLocallyConstantOfIsColimit_inv, CategoryTheory.TwoSquare.natTrans_op, CategoryTheory.SimplicialObject.isCoskeletal_iff, AlgebraicGeometry.Scheme.restrictFunctorΞ“_hom_app, smoothSheafCommRing.ΞΉ_forgetStalk_inv_apply, Condensed.lanPresheafNatIso_hom_app, CategoryTheory.Pretriangulated.shiftFunctorZero_op_hom_app, TopCat.Presheaf.IsSheaf.isSheafPreservesLimitPairwiseIntersections, final_op_of_initial, IsCoverDense.Types.appIso_inv, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, AlgebraicGeometry.Scheme.Hom.preservesLocalization_normalizationDiagramMap, op_commShiftIso_inv_app_assoc, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, AlgebraicGeometry.Spec.sheafedSpaceMap_hom_c_app, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, AlgebraicGeometry.Scheme.Hom.appIso_inv_naturality_assoc, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_auxβ‚‚, IsLocalization.op_iff, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.NatTrans.op_app, CategoryTheory.Limits.PushoutCocone.op_Ο€_app, CategoryTheory.NatTrans.op_comp, CategoryTheory.Adjunction.rightOp_eq, CategoryTheory.Limits.Ο€_comp_colimitOpIsoOpLimit_inv, IsCoverDense.restrictHomEquivHom_naturality_right_assoc, CategoryTheory.cones_obj_map_app, instIsEquivalenceOppositeOp, CategoryTheory.Limits.opCospan_inv_app, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, CategoryTheory.Equivalence.sheafCongr.functor_map_val_app, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, CategoryTheory.Adjunction.compPreadditiveYonedaIso_hom_app_app_apply, CategoryTheory.Limits.preservesFiniteProducts_op, CategoryTheory.Limits.PullbackCone.unop_ΞΉ_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, CategoryTheory.Adjunction.op_unit, IsCoverDense.Types.presheafIso_inv_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, CategoryTheory.Join.inclRightCompOpEquivInverse_hom_app_op, CategoryTheory.Limits.cospanOp_hom_app, CategoryTheory.NatIso.op_associator, smoothSheafCommRing.ΞΉ_forgetStalk_inv_assoc, skyscraperPresheafCocone_ΞΉ_app, op_commShiftIso_inv_app, CategoryTheory.Comma.unopFunctorCompSnd_inv_app, CategoryTheory.GrothendieckTopology.W_whiskerLeft_iff, CategoryTheory.GrothendieckTopology.diagramPullback_app, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, CategoryTheory.MorphismProperty.op_inverseImage, CompHausOpToFrame.faithful, CategoryTheory.Pretriangulated.Opposite.commShift_adjunction_op_int, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, TopCat.Presheaf.pullback_obj_obj_ext_iff, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.Limits.hasLimit_op_of_hasColimit, CategoryTheory.Adjunction.compYonedaIso_inv_app_app, IsRightAdjoint.op, CategoryTheory.Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_Ο€_assoc, LightProfinite.Extend.functorOp_map, CategoryTheory.Pretriangulated.Opposite.functor_isTriangulated_op, const.opObjOp_hom_app, CategoryTheory.MorphismProperty.RightFraction.op_map, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_inv_app_assoc, CategoryTheory.MorphismProperty.IsInvertedBy.op, Alexandrov.lowerCone_Ο€_app, CategoryTheory.Comma.opFunctorCompSnd_hom_app, CategoryTheory.Limits.instHasLimitDiscreteOppositeCompInverseOppositeOpFunctor, PresheafOfModules.pushforward_obj_obj, CategoryTheory.Join.inclLeftCompOpEquivInverse_inv_app_op, SSet.Truncated.rightExtensionInclusion_left, CategoryTheory.Adjunction.Triple.leftToRight_op, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_ofArrows_iff, map_opShiftFunctorEquivalence_counitIso_hom_app_unop, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso, CategoryTheory.NatIso.op_leftUnitor, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_iff, mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₃, CategoryTheory.NatTrans.coequifibered_op_iff, map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, const.opObjOp_inv_app, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο€, CategoryTheory.Equivalence.op_functor, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, CategoryTheory.yonedaMap_app_apply, IsCoverDense.Types.naturality_apply, CategoryTheory.NatTrans.rightOpWhiskerRight_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_Ο€_app, CategoryTheory.SimplicialObject.Truncated.trunc_map_app, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, const.unop_functor_op_obj_map, leftOpComp_inv_app, CategoryTheory.Comma.opFunctorCompFst_hom_app, CategoryTheory.Limits.limitCompYonedaIsoCocone_inv, CategoryTheory.Limits.Fork.op_ΞΉ_app, CategoryTheory.CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_homβ‚‚, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, CategoryTheory.Comma.opFunctorCompFst_inv_app, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, CategoryTheory.Comma.unopFunctor_map, CondensedSet.isDiscrete_tfae, CategoryTheory.Equivalence.precoherent_isSheaf_iff, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.ShortComplex.rightHomologyFunctorOpNatIso_hom_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, opHom_obj, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, CategoryTheory.yonedaPairing_map, CategoryTheory.Limits.preservesLimits_op, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.NatTrans.Coequifibered.op, rightOpComp_inv_app, CategoryTheory.Comma.opEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, opId_inv_app, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, CategoryTheory.Limits.FormalCoproduct.evalOpCompInlIsoId_hom_app_app, IsCoverDense.presheafIso_inv, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_naturality, CategoryTheory.flat_iff_lan_flat, CategoryTheory.yonedaPairingExt_iff, CategoryTheory.Comma.opEquiv_unitIso, opUnopEquiv_unitIso, CategoryTheory.LocalizerMorphism.op_functor, FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, CategoryTheory.lan_flat_of_flat, CategoryTheory.Join.inclLeftCompOpEquivInverse_hom_app_op, CategoryTheory.Presheaf.coconeOfRepresentable_naturality, PresheafOfModules.Derivation.d_app, CategoryTheory.NatIso.op_refl, CategoryTheory.Adjunction.compCoyonedaIso_hom_app_app, closedIhom_map_app, CategoryTheory.NatTrans.leftOpWhiskerRight, SSet.horn.spineId_vertex_coe, CategoryTheory.Presieve.FamilyOfElements.Compatible.functorPullback, map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, shift_map_op, CategoryTheory.Limits.ΞΉ_comp_colimitOpIsoOpLimit_hom, CategoryTheory.Pretriangulated.shiftFunctor_op_map, SSet.horn.spineId_arrow_coe, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app, CategoryTheory.SimplicialObject.IsCoskeletal.isRightKanExtension, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, Profinite.Extend.functorOp_final, FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, CategoryTheory.Pretriangulated.commShiftIso_opOp_hom_app, CategoryTheory.Comma.unopFunctorCompFst_inv_app, CategoryTheory.ShortComplex.leftHomologyFunctorOpNatIso_hom_app, FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, LightCondensed.lanPresheafNatIso_hom_app, smoothSheafCommRing.ΞΉ_forgetStalk_hom_apply, IsCoverDense.homOver_app, CategoryTheory.Adjunction.Quadruple.op_adj₁, CategoryTheory.NatIso.removeOp_inv, smoothSheafCommRing.ΞΉ_forgetStalk_hom_assoc, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down_assoc, SSet.Subcomplex.liftPath_arrow_coe, IsCoverDense.Types.presheafIso_hom_app, CategoryTheory.NatTrans.leftOpWhiskerRight_assoc, leftOpComp_hom_app, CategoryTheory.Limits.preservesLimit_op, sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, LightProfinite.Extend.cocone_pt, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_assoc, CategoryTheory.Limits.preservesFiniteCoproducts_op, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk, TopologicalSpace.Opens.op_map_comp_obj, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.TwoSquare.instGuitartExactOppositeOp, opComp_hom_app, CategoryTheory.NatIso.op_hom, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο€, instFullOppositeOp, Profinite.Extend.cocone_ΞΉ_app, CategoryTheory.Limits.preservesColimit_op, CategoryTheory.Presheaf.isLocallySurjective_whisker_iff, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, CategoryTheory.Pretriangulated.commShiftIso_opOp_inv_app_assoc, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_inv_app_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, mapConeOp_inv_hom, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_of, map_shift_unop_assoc, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, CategoryTheory.Comma.opFunctorCompSnd_inv_app, CategoryTheory.Pretriangulated.Opposite.UnopUnopCommShift.iso_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, TopCat.Presheaf.isGluing_iff_pairwise, Alexandrov.lowerCone_pt, op_isTriangulated_iff, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.NatIso.op_inv, PresheafOfModules.pushforward_assoc, Condensed.isoFinYoneda_hom_app, IsCoverDense.isoOver_inv_app, CategoryTheory.Limits.limitOpIsoOpColimit_inv_comp_Ο€, smoothSheaf.ΞΉ_evalHom, AlgebraicGeometry.SheafedSpace.Ξ“_def, CategoryTheory.Limits.preservesColimits_op, smoothSheafCommRing.ΞΉ_evalHom_assoc, CategoryTheory.Limits.Cone.unop_pt, CategoryTheory.Comma.opEquiv_inverse, CategoryTheory.PresheafHom.IsSheafFor.app_cond, mapCoconeOp_hom_hom, CategoryTheory.NatTrans.op_whiskerLeft, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, CategoryTheory.ShortComplex.rightHomologyFunctorOpNatIso_inv_app, LightCondensed.lanPresheafExt_inv, Condensed.lanPresheafExt_hom, SSet.Subcomplex.liftPath_vertex_coe, op_comp_isSheaf, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down, CategoryTheory.NatIso.removeOp_hom, WellOrderInductionData.map_lift, smoothSheafCommRing.ΞΉ_forgetStalk_hom, CategoryTheory.Limits.limitCompYonedaIsoCocone_hom_app, SSet.OneTruncationβ‚‚.ofNerveβ‚‚.natIso_inv_app_obj_map, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_obj, AlgebraicGeometry.PresheafedSpace.congr_app, CategoryTheory.Limits.Cocone.op_Ο€, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.map_lift, CategoryTheory.Limits.colimitYonedaHomIsoLimitOp_Ο€_apply, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.Limits.cospanOp_inv_app, PresheafOfModules.pushforward_obj_map_apply', CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.presheafHom_naturality_assoc, HomologicalComplex.cyclesOpNatIso_hom_app, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, skyscraperPresheafCoconeOfSpecializes_ΞΉ_app, CategoryTheory.PresheafHom.IsSheafFor.exists_app, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, mapConeOp_hom_hom, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, SSet.OneTruncationβ‚‚.nerveHomEquiv_apply, CategoryTheory.Equivalence.sheafCongr.inverse_map_val_app, CategoryTheory.Equivalence.preregular_isSheaf_iff_of_essentiallySmall, op_comp_isSheaf_of_preservesOneHypercovers, CategoryTheory.PreGaloisCategory.PointedGaloisObject.instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, CategoryTheory.Limits.instHasColimitOppositeDiscreteOpFunctor, opHom_map_app, map_opShiftFunctorEquivalence_counitIso_inv_app_unop, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, CategoryTheory.cones_map_app_app, LightCondensed.isoFinYoneda_hom_app, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_hom_app_assoc, AlgebraicGeometry.SheafedSpace.congr_hom_app, map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, CategoryTheory.NatTrans.Equifibered.op, CategoryTheory.Limits.Cone.op_pt, CategoryTheory.Adjunction.representableBy_homEquiv, AlgebraicGeometry.PresheafedSpace.restrict_presheaf, ContinuousMap.comp_yonedaPresheaf', CategoryTheory.Enriched.FunctorCategory.enrichedComp_Ο€, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_hom_app, CategoryTheory.ShortComplex.leftHomologyFunctorOpNatIso_inv_app, op_commShiftIso_hom_app, CategoryTheory.Equivalence.op_unitIso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, skyscraperPresheafCoconeOfSpecializes_pt, CategoryTheory.PresheafHom.isAmalgamation_iff, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, CategoryTheory.Pretriangulated.Opposite.OpOpCommShift.iso_hom_app, IsContinuous.op_comp_isSheaf_of_types, CategoryTheory.Equivalence.op_inverse, CategoryTheory.Limits.Cocone.unop_pt, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecMapBasicOpen_eq, CategoryTheory.uliftYonedaMap_app_apply, WellOrderInductionData.Extension.map_limit, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, IsCoverDense.Types.appIso_hom, IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, SSet.Truncated.rightExtensionInclusion_hom_app, TopCat.Presheaf.toPushforwardOfIso_app, FullyFaithful.homNatIso_hom_app_down, CategoryTheory.Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_map_val_app, SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_hom_app_assoc, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_invApp, TopCat.Presheaf.IsSheaf.isSheafOpensLeCover, CategoryTheory.Limits.preservesColimitsOfShape_op, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecCBasicOpens_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, CategoryTheory.Limits.opParallelPairIso_inv_app_zero, SheafOfModules.pushforwardSections_coe, CategoryTheory.Limits.opParallelPairIso_inv_app_one, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_Ο€, AlgebraicGeometry.SheafedSpace.congr_app, CategoryTheory.yonedaYonedaColimit_app_inv, CategoryTheory.Limits.Cone.extensions_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, CategoryTheory.Comma.unopFunctorCompSnd_hom_app, LightCondensed.lanPresheafExt_hom, CategoryTheory.PreGaloisCategory.PointedGaloisObject.cocone_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Adjunction.op_counit, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt, CategoryTheory.Adjunction.Quadruple.op_adjβ‚‚, PresheafOfModules.pushforwardβ‚€_obj_obj_isModule, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_assoc, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Limits.opSpan_inv_app, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app, CategoryTheory.Limits.coyonedaCompLimIsoCones_hom_app_app, Condensed.isoFinYoneda_inv_app, CategoryTheory.Equivalence.op_counitIso, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_invApp, op_additive, CategoryTheory.Comma.unopFunctorCompFst_hom_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_functor, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk_assoc, CategoryTheory.representablyCoflat_op_iff, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', IsLocalization.op, CategoryTheory.NatTrans.removeOp_app, IsCoverDense.restrictHomEquivHom_naturality_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_Ο€_assoc, Condensed.locallyConstantIsoFinYoneda_hom_app, AlgebraicGeometry.nonempty_isColimit_Ξ“_mapCocone, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, SSet.StrictSegal.isRightKanExtension, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_basicOpen_eq, map_opShiftFunctorEquivalence_unitIso_hom_app_unop, op_obj, CategoryTheory.Limits.FormalCoproduct.evalOpCompInlIsoId_inv_app_app, CategoryTheory.Adjunction.Quadruple.op_adj₃, mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_homβ‚‚, CategoryTheory.CostructuredArrow.toStructuredArrow_map, IsCoverDense.Types.pushforwardFamily_apply, LightProfinite.Extend.functorOp_final, CategoryTheory.presheafHom_map_app_op_mk_id, Condensed.lanPresheafIso_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as, CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ΞΉ, TopCat.Presheaf.isSheaf_of_isOpenEmbedding, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_unop, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, IsCoverDense.restrictHomEquivHom_naturality_left_symm, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality_assoc, CategoryTheory.Pretriangulated.shiftFunctorCompIsoId_op_inv_app_assoc, CategoryTheory.colimitYonedaHomEquiv_Ο€_apply, CategoryTheory.Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap, AlgebraicGeometry.PresheafedSpace.ofRestrict_c_app, IsCoverDense.Types.naturality_assoc, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit, CategoryTheory.Limits.Cone.op_ΞΉ, CategoryTheory.Limits.hasColimit_op_of_hasLimit, op_map, PresheafOfModules.pushforwardβ‚€_obj_map, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app, CategoryTheory.Limits.parallelPairOpIso_hom_app_zero, IsCoverDense.Types.naturality
opComp πŸ“–CompOp
11 mathmath: CategoryTheory.NatIso.op_rightUnitor, opComp_inv_app, CategoryTheory.NatIso.op_isoWhiskerLeft, CategoryTheory.NatTrans.op_whiskerRight_assoc, CategoryTheory.NatIso.op_isoWhiskerRight, CategoryTheory.NatTrans.op_whiskerRight, CategoryTheory.NatTrans.op_whiskerLeft_assoc, CategoryTheory.NatIso.op_associator, CategoryTheory.NatIso.op_leftUnitor, opComp_hom_app, CategoryTheory.NatTrans.op_whiskerLeft
opHom πŸ“–CompOp
11 mathmath: CategoryTheory.cosimplicialSimplicialEquiv_counitIso_hom_app_app, opUnopEquiv_counitIso, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, opUnopEquiv_functor, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_inv_app_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, opHom_obj, opUnopEquiv_unitIso, opHom_map_app, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app
opId πŸ“–CompOp
4 mathmath: CategoryTheory.NatIso.op_rightUnitor, opId_hom_app, CategoryTheory.NatIso.op_leftUnitor, opId_inv_app
opInv πŸ“–CompOp
9 mathmath: CategoryTheory.cosimplicialSimplicialEquiv_counitIso_hom_app_app, opInv_obj, opUnopEquiv_counitIso, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_inv_app_app, opUnopEquiv_inverse, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, opInv_map, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, opUnopEquiv_unitIso
opUnopEquiv πŸ“–CompOp
4 mathmath: opUnopEquiv_counitIso, opUnopEquiv_functor, opUnopEquiv_inverse, opUnopEquiv_unitIso
opUnopIso πŸ“–CompOp
5 mathmath: opUnopIso_hom_app, opUnopIso_inv_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, opUnopEquiv_unitIso
rightOp πŸ“–CompOp
158 mathmath: CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο€, functorHomEquiv_apply_app, natTransEquiv_apply_app, CategoryTheory.Limits.preservesColimitsOfShape_rightOp, CategoryTheory.Limits.isLimitConeRightOpOfCocone_lift, CategoryTheory.Limits.preservesFiniteCoproducts_rightOp, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app, rightOp_map, AlgebraicGeometry.Ξ“Spec.isIso_adjunction_counit, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, AlgebraicGeometry.instPreservesLimitSchemeOppositeCommRingCatRightOpΞ“OfIsAffineHomMapOfCompactSpaceOfQuasiSeparatedSpaceCarrierCarrierObj, CategoryTheory.Limits.preservesColimits_rightOp, leftOpRightOpEquiv_counitIso_inv_app_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, CategoryTheory.NatTrans.Equifibered.rightOp, AlgebraicGeometry.AffineScheme.instIsEquivalenceOppositeCommRingCatOpRightOpΞ“, AlgebraicGeometry.Scheme.SpecΞ“Identity_hom_app, AlgebraicGeometry.AffineScheme.instIsEquivalenceOppositeCommRingCatRightOpΞ“, CategoryTheory.Limits.isColimitOfConeRightOpOfCocone_desc, CategoryTheory.NatTrans.rightOp_comp, CategoryTheory.Limits.isLimitOfCoconeOfConeRightOp_lift, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο€_assoc, rightOpComp_hom_app, rightOpLeftOpIso_hom_app, instFinalOppositeRightOpOfInitial, CategoryTheory.Limits.coneOfCoconeRightOp_Ο€, CategoryTheory.Limits.preservesColimit_rightOp, CategoryTheory.Limits.ΞΉ_comp_colimitRightOpIsoUnopLimit_hom_assoc, AlgebraicGeometry.Scheme.kerAdjunction_unit_app, leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, AlgebraicGeometry.Ξ“Spec.adjunction_counit_app', AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app', CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο€, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, CategoryTheory.Limits.preservesFiniteColimits_rightOp, AlgebraicGeometry.AffineScheme.Ξ“_preservesLimits, natTransEquiv_symm_apply_app, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, CategoryTheory.NatTrans.rightOpWhiskerRight, AlgebraicGeometry.Ξ“Spec.adjunction_counit_app, leftOpRightOpIso_hom_app, rightOpId_inv_app, rightOp_obj, CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, AlgebraicGeometry.Scheme.SpecΞ“Identity_app, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.MorphismProperty.IsInvertedBy.rightOp, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, CategoryTheory.FunctorToTypes.rightAdj_map_app, AlgebraicGeometry.Ξ“Spec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, AlgebraicGeometry.Ξ“Spec.adjunction_unit_app, CategoryTheory.Limits.preservesLimitsOfSize_rightOp, IsLeftAdjoint.rightOp, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_hom_app, CategoryTheory.FunctorToTypes.rightAdj_map_app_app, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ΞΉ, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, AlgebraicGeometry.Ξ“Spec.left_triangle, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_homEquiv_apply', CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο€, AlgebraicGeometry.Ξ“Spec.unop_locallyRingedSpaceAdjunction_counit_app', rightOpLeftOpIso_inv_app, CategoryTheory.Limits.coneRightOpOfCocone_Ο€, functorHom_ext_iff, rightOp_faithful, rightOp_full, rightOp_leftOp_eq, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.Limits.coconeOfConeRightOp_ΞΉ, AlgebraicGeometry.instIsIsoSchemeAppUnitOppositeCommRingCatAdjunctionOfIsAffine, CategoryTheory.Adjunction.rightOp_counit, AlgebraicGeometry.Ξ“Spec.isIso_locallyRingedSpaceAdjunction_counit, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.Adjunction.rightOp_eq, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_hom_app, leftOpRightOpEquiv_unitIso_hom_app, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο€_assoc, CategoryTheory.NatTrans.removeRightOp_app, CategoryTheory.Limits.limitRightOpIsoOpColimit_hom_comp_ΞΉ_assoc, CategoryTheory.Limits.isLimitOfCoconeRightOpOfCone_lift, CategoryTheory.Limits.coconeOfConeRightOp_pt, CategoryTheory.Limits.isLimitConeOfCoconeRightOp_lift, CategoryTheory.Limits.coneOfCoconeRightOp_pt, CategoryTheory.Limits.ΞΉ_comp_colimitRightOpIsoUnopLimit_hom, CategoryTheory.Limits.hasLimit_rightOp_of_hasColimit, CategoryTheory.NatTrans.rightOpWhiskerRight_assoc, CategoryTheory.Limits.preservesFiniteProducts_rightOp, AlgebraicGeometry.Ξ“Spec.adjunction_homEquiv_apply, CategoryTheory.simplicialCosimplicialEquiv_functor_map_app, leftOpRightOpEquiv_counitIso_hom_app_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CategoryTheory.Limits.coneRightOpOfCocone_pt, rightOpComp_inv_app, CategoryTheory.Adjunction.rightOp_unit, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_homEquiv_apply, AlgebraicGeometry.Ξ“SpecIso_inv_Ξ“Spec_adjunction_homEquiv, CategoryTheory.NatTrans.rightOp_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.isLocallyDirected, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο€_assoc, AlgebraicGeometry.Scheme.SpecΞ“Identity_inv_app, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, AlgebraicGeometry.preservesLimit_rightOp_Ξ“, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_unit, CategoryTheory.Limits.preservesFiniteLimits_rightOp, CategoryTheory.FunctorToTypes.rightAdj_obj_map_app, CategoryTheory.Limits.isColimitCoconeRightOpOfCone_desc, CategoryTheory.Limits.isColimitCoconeOfConeRightOp_desc, CategoryTheory.Limits.Ο€_comp_colimitRightOpIsoUnopLimit_inv, CategoryTheory.NatTrans.Coequifibered.rightOp, CategoryTheory.Limits.coconeRightOpOfCone_ΞΉ, AlgebraicGeometry.Ξ“Spec.right_triangle, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_inv_app, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, AlgebraicGeometry.Ξ“Spec.adjunction_homEquiv_symm_apply, CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο€_assoc, CategoryTheory.Limits.hasColimit_rightOp_of_hasLimit, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_inv_app, CategoryTheory.Limits.preservesColimitsOfSize_rightOp, CategoryTheory.Limits.isColimitOfConeOfCoconeRightOp_desc, instEssSurjOppositeRightOp, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit_Ο€_apply, rightOpId_hom_app, AlgebraicGeometry.Scheme.AffineZariskiSite.cocone_ΞΉ_app, rightOp_additive, CategoryTheory.coyonedaPairing_map, CategoryTheory.Limits.Ο€_comp_colimitRightOpIsoUnopLimit_inv_assoc, instIsEquivalenceOppositeRightOp, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso, AlgebraicGeometry.Scheme.AffineZariskiSite.cocone_pt, AlgebraicGeometry.Ξ“Spec_adjunction_homEquiv_eq, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_Ο€_assoc, CategoryTheory.coyonedaPairingExt_iff, CategoryTheory.Limits.coconeRightOpOfCone_pt, AlgebraicGeometry.LocallyRingedSpace.SpecΞ“Identity_hom_app, leftOpRightOpEquiv_functor_map_app, CategoryTheory.Limits.preservesLimitsOfShape_rightOp, CategoryTheory.NatTrans.rightOp_id, CategoryTheory.NatTrans.removeRightOp_id, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_map_app, CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp_Ο€_apply, rightOp_map_unop, AlgebraicGeometry.LocallyRingedSpace.SpecΞ“Identity_inv_app, leftOpRightOpIso_inv_app, instInitialOppositeRightOpOfFinal, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_hom_app, CategoryTheory.Limits.preservesLimits_rightOp, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.isOpenImmersion, IsRightAdjoint.rightOp, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_inv_app, CategoryTheory.Limits.preservesLimit_rightOp, CategoryTheory.Limits.limitRightOpIsoOpColimit_inv_comp_Ο€, functorHomEquiv_symm_apply_app_app, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο€
rightOpComp πŸ“–CompOp
4 mathmath: rightOpComp_hom_app, CategoryTheory.NatTrans.rightOpWhiskerRight, CategoryTheory.NatTrans.rightOpWhiskerRight_assoc, rightOpComp_inv_app
rightOpId πŸ“–CompOp
2 mathmath: rightOpId_inv_app, rightOpId_hom_app
rightOpLeftOpIso πŸ“–CompOp
8 mathmath: rightOpLeftOpIso_hom_app, leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, rightOpLeftOpIso_inv_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, leftOpRightOpEquiv_unitIso_hom_app, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app
unop πŸ“–CompOp
90 mathmath: CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ΞΉ, CategoryTheory.NatTrans.unop_whiskerLeft, opUnopIso_hom_app, unopOpIso_inv_app, CategoryTheory.NatIso.unop_rightUnitor, CategoryTheory.NatTrans.unop_comp_assoc, CategoryTheory.NatTrans.unop_whiskerLeft_assoc, opInv_obj, CategoryTheory.Limits.preservesLimits_unop, CategoryTheory.Limits.coneUnopOfCocone_pt, opUnopIso_inv_app, unopId_inv_app, CategoryTheory.Limits.Ο€_comp_colimitUnopIsoOpLimit_inv, CategoryTheory.Limits.coconeOfConeUnop_pt, CategoryTheory.Limits.preservesColimit_unop, CategoryTheory.NatIso.unop_trans, unop_additive, CategoryTheory.NatTrans.removeUnop_app, CategoryTheory.Limits.preservesColimitsOfSize_unop, CategoryTheory.Limits.colimitYonedaHomIsoLimit_Ο€_apply, CategoryTheory.Limits.coneOfCoconeUnop_Ο€, CategoryTheory.Limits.isLimitConeOfCoconeUnop_lift, CategoryTheory.Limits.isColimitOfConeUnopOfCocone_desc, CategoryTheory.cosimplicialSimplicialEquiv_inverse_obj, CategoryTheory.MorphismProperty.IsInvertedBy.unop, CategoryTheory.Limits.isColimitCoconeUnopOfCone_desc, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_Ο€_assoc, CategoryTheory.NatTrans.unop_whiskerRight, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop_Ο€_apply, CategoryTheory.Limits.preservesLimitsOfShape_unop, CategoryTheory.Equivalence.unop_counitIso, CategoryTheory.Limits.preservesFiniteCoproducts_unop, CategoryTheory.Limits.isLimitConeUnopOfCocone_lift, CategoryTheory.NatIso.unop_symm, unopOpIso_hom_app, CategoryTheory.Adjunction.unop_counit, CategoryTheory.Limits.preservesColimits_unop, unop_obj, CategoryTheory.NatIso.unop_whiskerRight, CategoryTheory.Limits.hasLimit_unop_of_hasColimit, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, unop_map, opInv_map, CategoryTheory.NatIso.unop_leftUnitor, CategoryTheory.NatIso.unop_associator, CategoryTheory.NatTrans.unop_id, CategoryTheory.Limits.preservesFiniteProducts_unop, CategoryTheory.Limits.isLimitOfCoconeOfConeUnop_lift, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, CategoryTheory.Limits.preservesLimitsOfSize_unop, CategoryTheory.Limits.coconeUnopOfCone_pt, IsLocalization.unop, opUnopEquiv_unitIso, CategoryTheory.NatTrans.equifibered_unop_iff, CategoryTheory.Limits.limitUnopIsoUnopColimit_hom_comp_ΞΉ_assoc, CategoryTheory.Limits.preservesFiniteLimits_unop, CategoryTheory.Limits.ΞΉ_comp_colimitUnopIsoOpLimit_hom_assoc, CategoryTheory.NatTrans.coequifibered_unop_iff, unopComp_inv_app, CategoryTheory.NatTrans.Coequifibered.unop, CategoryTheory.Limits.preservesLimit_unop, CategoryTheory.Limits.coconeOfConeUnop_ΞΉ, CategoryTheory.NatTrans.removeUnop_id, CategoryTheory.Equivalence.unop_inverse, CategoryTheory.Limits.isLimitOfCoconeUnopOfCone_lift, CategoryTheory.Limits.preservesFiniteColimits_unop, CategoryTheory.NatIso.unop_refl, CategoryTheory.NatTrans.Equifibered.unop, CategoryTheory.Equivalence.unop_unitIso, CategoryTheory.cosimplicialSimplicialEquiv_inverse_map, CategoryTheory.Limits.Ο€_comp_colimitUnopIsoOpLimit_inv_assoc, CategoryTheory.Equivalence.unop_functor, CategoryTheory.Limits.isColimitOfConeOfCoconeUnop_desc, CategoryTheory.NatIso.unop_inv, CategoryTheory.Limits.coconeUnopOfCone_ΞΉ, CategoryTheory.NatTrans.unop_whiskerRight_assoc, CategoryTheory.Limits.preservesColimitsOfShape_unop, CategoryTheory.Limits.coneUnopOfCocone_Ο€, CategoryTheory.Limits.hasColimit_unop_of_hasLimit, CategoryTheory.NatIso.unop_whiskerLeft, CategoryTheory.Limits.isColimitCoconeOfConeUnop_desc, CategoryTheory.NatIso.unop_hom, unopId_hom_app, CategoryTheory.Adjunction.unop_unit, CategoryTheory.Limits.limitUnopIsoUnopColimit_inv_comp_Ο€, CategoryTheory.NatTrans.unop_app, CategoryTheory.Limits.coneOfCoconeUnop_pt, unopComp_hom_app, CategoryTheory.Limits.ΞΉ_comp_colimitUnopIsoOpLimit_hom, CategoryTheory.NatTrans.unop_comp
unopComp πŸ“–CompOp
11 mathmath: CategoryTheory.NatTrans.unop_whiskerLeft, CategoryTheory.NatIso.unop_rightUnitor, CategoryTheory.NatTrans.unop_whiskerLeft_assoc, CategoryTheory.NatTrans.unop_whiskerRight, CategoryTheory.NatIso.unop_whiskerRight, CategoryTheory.NatIso.unop_leftUnitor, CategoryTheory.NatIso.unop_associator, unopComp_inv_app, CategoryTheory.NatTrans.unop_whiskerRight_assoc, CategoryTheory.NatIso.unop_whiskerLeft, unopComp_hom_app
unopId πŸ“–CompOp
4 mathmath: CategoryTheory.NatIso.unop_rightUnitor, unopId_inv_app, CategoryTheory.NatIso.unop_leftUnitor, unopId_hom_app
unopOpIso πŸ“–CompOp
3 mathmath: unopOpIso_inv_app, opUnopEquiv_counitIso, unopOpIso_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
instEssSurjOppositeLeftOp πŸ“–mathematicalβ€”EssSurj
Opposite
CategoryTheory.Category.opposite
leftOp
β€”EssSurj.mem_essImage
instEssSurjOppositeOp πŸ“–mathematicalβ€”EssSurj
Opposite
CategoryTheory.Category.opposite
op
β€”EssSurj.mem_essImage
instEssSurjOppositeRightOp πŸ“–mathematicalβ€”EssSurj
Opposite
CategoryTheory.Category.opposite
rightOp
β€”EssSurj.mem_essImage
instFaithfulOppositeOp πŸ“–mathematicalβ€”Faithful
Opposite
CategoryTheory.Category.opposite
op
β€”map_injective
instFullOppositeOp πŸ“–mathematicalβ€”Full
Opposite
CategoryTheory.Category.opposite
op
β€”map_preimage
instIsEquivalenceOppositeLeftOp πŸ“–mathematicalβ€”IsEquivalence
Opposite
CategoryTheory.Category.opposite
leftOp
β€”leftOp_faithful
IsEquivalence.faithful
leftOp_full
IsEquivalence.full
instEssSurjOppositeLeftOp
IsEquivalence.essSurj
instIsEquivalenceOppositeOp πŸ“–mathematicalβ€”IsEquivalence
Opposite
CategoryTheory.Category.opposite
op
β€”instFaithfulOppositeOp
IsEquivalence.faithful
instFullOppositeOp
IsEquivalence.full
instEssSurjOppositeOp
IsEquivalence.essSurj
instIsEquivalenceOppositeRightOp πŸ“–mathematicalβ€”IsEquivalence
Opposite
CategoryTheory.Category.opposite
rightOp
β€”rightOp_faithful
IsEquivalence.faithful
rightOp_full
IsEquivalence.full
instEssSurjOppositeRightOp
IsEquivalence.essSurj
leftOpComp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
leftOp
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
op
leftOpComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
obj
β€”β€”
leftOpComp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
leftOp
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
op
leftOpComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
obj
β€”β€”
leftOpId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
leftOp
id
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.unopUnop
leftOpId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
β€”β€”
leftOpId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
leftOp
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CategoryTheory.unopUnop
leftOpId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
β€”β€”
leftOpRightOpEquiv_counitIso_hom_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
obj
CategoryTheory.Functor
category
comp
Opposite.op
leftOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.leftOp
rightOp
Opposite.unop
CategoryTheory.NatTrans.rightOp
Quiver.Hom.unop
id
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
leftOpRightOpEquiv
CategoryTheory.CategoryStruct.id
β€”β€”
leftOpRightOpEquiv_counitIso_inv_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
obj
CategoryTheory.Functor
category
id
comp
Opposite.op
leftOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.leftOp
rightOp
Opposite.unop
CategoryTheory.NatTrans.rightOp
Quiver.Hom.unop
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
leftOpRightOpEquiv
CategoryTheory.CategoryStruct.id
β€”β€”
leftOpRightOpEquiv_functor_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
rightOp
Opposite.unop
CategoryTheory.Functor
map
category
CategoryTheory.Equivalence.functor
leftOpRightOpEquiv
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite.op
Quiver.Hom.unop
β€”β€”
leftOpRightOpEquiv_functor_obj_map πŸ“–mathematicalβ€”map
Opposite
CategoryTheory.Category.opposite
obj
CategoryTheory.Functor
category
CategoryTheory.Equivalence.functor
leftOpRightOpEquiv
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Opposite.op
β€”β€”
leftOpRightOpEquiv_functor_obj_obj πŸ“–mathematicalβ€”obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
CategoryTheory.Equivalence.functor
leftOpRightOpEquiv
Opposite.op
Opposite.unop
β€”β€”
leftOpRightOpEquiv_inverse_map πŸ“–mathematicalβ€”map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
category
CategoryTheory.Equivalence.inverse
leftOpRightOpEquiv
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
leftOp
CategoryTheory.NatTrans.leftOp
β€”β€”
leftOpRightOpEquiv_inverse_obj πŸ“–mathematicalβ€”obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
category
CategoryTheory.Equivalence.inverse
leftOpRightOpEquiv
Opposite.op
leftOp
β€”β€”
leftOpRightOpEquiv_unitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
category
id
comp
rightOp
Opposite.unop
CategoryTheory.NatTrans.rightOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
leftOp
Quiver.Hom.op
CategoryTheory.NatTrans.leftOp
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
leftOpRightOpEquiv
rightOpLeftOpIso
β€”β€”
leftOpRightOpEquiv_unitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
category
comp
rightOp
Opposite.unop
CategoryTheory.NatTrans.rightOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
leftOp
Quiver.Hom.op
CategoryTheory.NatTrans.leftOp
id
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
leftOpRightOpEquiv
rightOpLeftOpIso
β€”β€”
leftOpRightOpIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
rightOp
leftOp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftOpRightOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
leftOpRightOpIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
rightOp
leftOp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftOpRightOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
leftOp_faithful πŸ“–mathematicalβ€”Faithful
Opposite
CategoryTheory.Category.opposite
leftOp
β€”map_injective
leftOp_full πŸ“–mathematicalβ€”Full
Opposite
CategoryTheory.Category.opposite
leftOp
β€”map_preimage
leftOp_map πŸ“–mathematicalβ€”map
Opposite
CategoryTheory.Category.opposite
leftOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite.unop
β€”β€”
leftOp_obj πŸ“–mathematicalβ€”obj
Opposite
CategoryTheory.Category.opposite
leftOp
Opposite.unop
β€”β€”
opComp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
op
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
opComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
Opposite.unop
β€”β€”
opComp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
op
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
opComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
Opposite.unop
β€”β€”
opHom_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
op
Opposite.unop
CategoryTheory.Functor
map
category
opHom
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Quiver.Hom.unop
β€”β€”
opHom_obj πŸ“–mathematicalβ€”obj
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
category
opHom
op
Opposite.unop
β€”β€”
opId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
op
id
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
opId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
opId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
op
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
opId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
opInv_map πŸ“–mathematicalβ€”map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
category
opInv
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop
Quiver.Hom.unop
obj
Opposite.op
CategoryTheory.NatTrans.app
β€”β€”
opInv_obj πŸ“–mathematicalβ€”obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
category
opInv
Opposite.op
unop
β€”β€”
opUnopEquiv_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
category
opUnopEquiv
CategoryTheory.NatIso.ofComponents
comp
opInv
opHom
id
unopOpIso
β€”β€”
opUnopEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
category
opUnopEquiv
opHom
β€”β€”
opUnopEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
category
opUnopEquiv
opInv
β€”β€”
opUnopEquiv_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
category
opUnopEquiv
CategoryTheory.NatIso.ofComponents
id
comp
opHom
opInv
CategoryTheory.Iso.op
unop
op
Opposite.unop
opUnopIso
β€”β€”
opUnopIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
unop
op
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
opUnopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
opUnopIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
unop
op
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
opUnopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
op_map πŸ“–mathematicalβ€”map
Opposite
CategoryTheory.Category.opposite
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite.unop
Quiver.Hom.unop
β€”β€”
op_obj πŸ“–mathematicalβ€”obj
Opposite
CategoryTheory.Category.opposite
op
Opposite.op
Opposite.unop
β€”β€”
rightOpComp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
rightOp
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
op
rightOpComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
β€”β€”
rightOpComp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
rightOp
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
op
rightOpComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
obj
β€”β€”
rightOpId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
rightOp
id
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.opOp
rightOpId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
β€”β€”
rightOpId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
rightOp
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CategoryTheory.opOp
rightOpId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
β€”β€”
rightOpLeftOpIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
leftOp
rightOp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightOpLeftOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
rightOpLeftOpIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
leftOp
rightOp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightOpLeftOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
rightOp_faithful πŸ“–mathematicalβ€”Faithful
Opposite
CategoryTheory.Category.opposite
rightOp
β€”map_injective
rightOp_full πŸ“–mathematicalβ€”Full
Opposite
CategoryTheory.Category.opposite
rightOp
β€”map_preimage
rightOp_leftOp_eq πŸ“–mathematicalβ€”leftOp
rightOp
β€”β€”
rightOp_map πŸ“–mathematicalβ€”map
Opposite
CategoryTheory.Category.opposite
rightOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite.op
β€”β€”
rightOp_map_unop πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite
CategoryTheory.Category.opposite
rightOp
map
Opposite.op
Quiver.Hom.op
β€”β€”
rightOp_obj πŸ“–mathematicalβ€”obj
Opposite
CategoryTheory.Category.opposite
rightOp
Opposite.op
β€”β€”
unopComp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
unop
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
unopComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
obj
Opposite.op
β€”β€”
unopComp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
unop
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
unopComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
obj
Opposite.op
β€”β€”
unopId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
unop
id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
unopId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unopId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
unop
id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
unopId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unopOpIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
op
unop
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
unopOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
unopOpIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
op
unop
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
unopOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”β€”
unop_map πŸ“–mathematicalβ€”map
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
β€”β€”
unop_obj πŸ“–mathematicalβ€”obj
unop
Opposite.unop
Opposite
CategoryTheory.Category.opposite
Opposite.op
β€”β€”

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
leftOp πŸ“–CompOpβ€”
op πŸ“–CompOpβ€”
rightOp πŸ“–CompOpβ€”

CategoryTheory.Iso

Definitions

NameCategoryTheorems
op πŸ“–CompOp
32 mathmath: AlgebraicGeometry.Scheme.germ_stalkClosedPointTo, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso, op_inv, op_symm, CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, op_hom, CategoryTheory.op_leftUnitor, op_trans, CategoryTheory.Limits.opProductIsoCoproduct'_comp_self, CategoryTheory.op_braiding, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso_op, CategoryTheory.op_rightUnitor, AlgebraicGeometry.Scheme.Hom.comp_appIso, AlgebraicGeometry.Scheme.Hom.id_appIso, AlgebraicGeometry.Scheme.isoSpec_Spec, CategoryTheory.Equivalence.symmEquiv_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CategoryTheory.isoOpEquiv_symm_apply, CategoryTheory.Functor.opUnopEquiv_unitIso, op_refl, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_assoc, op_unop, CategoryTheory.ShortComplex.HomologyData.op_iso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso_op, CompHausLike.LocallyConstant.sigmaComparison_comp_sigmaIso, unop_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso, CategoryTheory.op_associator, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionUnitIso
unop πŸ“–CompOp
21 mathmath: CategoryTheory.Localization.isoOfHom_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso, unop_refl, unop_trans, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso_unop, unop_symm, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionUnitIso, CategoryTheory.Equivalence.inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, CategoryTheory.unop_leftUnitor, CategoryTheory.unop_braiding, unop_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso_unop, CategoryTheory.unop_rightUnitor, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso, unop_hom, op_unop, CategoryTheory.ShortComplex.HomologyData.unop_iso, CategoryTheory.isoOpEquiv_apply, unop_op, CategoryTheory.unop_associator

Theorems

NameKindAssumesProvesValidatesDepends On
op_hom πŸ“–mathematicalβ€”hom
Opposite
CategoryTheory.Category.opposite
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
op_inv πŸ“–mathematicalβ€”inv
Opposite
CategoryTheory.Category.opposite
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
op_refl πŸ“–mathematicalβ€”op
refl
Opposite
CategoryTheory.Category.opposite
Opposite.op
β€”β€”
op_symm πŸ“–mathematicalβ€”op
symm
Opposite
CategoryTheory.Category.opposite
Opposite.op
β€”β€”
op_trans πŸ“–mathematicalβ€”op
trans
Opposite
CategoryTheory.Category.opposite
Opposite.op
β€”β€”
op_unop πŸ“–mathematicalβ€”unop
Opposite.op
op
β€”ext
unop_hom πŸ“–mathematicalβ€”hom
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_hom_inv_id_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.NatTrans.app
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.unop_comp
inv_hom_id_app
CategoryTheory.unop_id
unop_hom_inv_id_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.NatTrans.app
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
unop_hom_inv_id_app
unop_inv πŸ“–mathematicalβ€”inv
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_inv_hom_id_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.NatTrans.app
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
hom
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.unop_comp
hom_inv_id_app
CategoryTheory.unop_id
unop_inv_hom_id_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.NatTrans.app
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
unop_inv_hom_id_app
unop_op πŸ“–mathematicalβ€”op
Opposite.unop
unop
β€”ext
unop_refl πŸ“–mathematicalβ€”unop
refl
Opposite
CategoryTheory.Category.opposite
Opposite.unop
β€”β€”
unop_symm πŸ“–mathematicalβ€”unop
symm
Opposite
CategoryTheory.Category.opposite
Opposite.unop
β€”β€”
unop_trans πŸ“–mathematicalβ€”unop
trans
Opposite
CategoryTheory.Category.opposite
Opposite.unop
β€”β€”

CategoryTheory.NatIso

Definitions

NameCategoryTheorems
op πŸ“–CompOp
14 mathmath: op_rightUnitor, CategoryTheory.Functor.commShiftOp_iso_eq, op_trans, op_isoWhiskerLeft, op_isoWhiskerRight, op_symm, op_associator, op_leftUnitor, op_refl, op_hom, op_inv, CategoryTheory.Equivalence.op_unitIso, CategoryTheory.Equivalence.op_counitIso, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit
removeOp πŸ“–CompOp
3 mathmath: removeOp_inv, removeOp_hom, CategoryTheory.Functor.commShiftUnop_commShiftIso
unop πŸ“–CompOp
12 mathmath: unop_rightUnitor, unop_trans, CategoryTheory.Equivalence.unop_counitIso, unop_symm, unop_whiskerRight, unop_leftUnitor, unop_associator, unop_refl, CategoryTheory.Equivalence.unop_unitIso, unop_inv, unop_whiskerLeft, unop_hom

Theorems

NameKindAssumesProvesValidatesDepends On
op_associator πŸ“–mathematicalβ€”op
CategoryTheory.Functor.comp
CategoryTheory.Functor.associator
CategoryTheory.Iso.trans
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.opComp
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerRight
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
op_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
op
CategoryTheory.NatTrans.op
β€”β€”
op_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
op
CategoryTheory.NatTrans.op
β€”β€”
op_isoWhiskerLeft πŸ“–mathematicalβ€”op
CategoryTheory.Functor.comp
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.trans
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.opComp
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
op_isoWhiskerRight πŸ“–mathematicalβ€”op
CategoryTheory.Functor.comp
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Iso.trans
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.opComp
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
op_leftUnitor πŸ“–mathematicalβ€”op
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.leftUnitor
CategoryTheory.Iso.trans
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Functor.opId
CategoryTheory.Functor.opComp
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
op_refl πŸ“–mathematicalβ€”op
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
op_rightUnitor πŸ“–mathematicalβ€”op
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.rightUnitor
CategoryTheory.Iso.trans
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Functor.opId
CategoryTheory.Functor.opComp
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
op_symm πŸ“–mathematicalβ€”op
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
op_trans πŸ“–mathematicalβ€”op
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
removeOp_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
removeOp
CategoryTheory.NatTrans.removeOp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
removeOp_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
removeOp
CategoryTheory.NatTrans.removeOp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
unop_associator πŸ“–mathematicalβ€”unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.associator
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Functor.unopComp
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerRight
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
unop_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
unop
CategoryTheory.NatTrans.unop
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
unop
CategoryTheory.NatTrans.unop
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_leftUnitor πŸ“–mathematicalβ€”unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
CategoryTheory.Functor.leftUnitor
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Functor.unopId
CategoryTheory.Functor.unopComp
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
unop_refl πŸ“–mathematicalβ€”unop
CategoryTheory.Iso.refl
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
β€”β€”
unop_rightUnitor πŸ“–mathematicalβ€”unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
CategoryTheory.Functor.rightUnitor
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Functor.unopId
CategoryTheory.Functor.unopComp
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
unop_symm πŸ“–mathematicalβ€”unop
CategoryTheory.Iso.symm
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
β€”β€”
unop_trans πŸ“–mathematicalβ€”unop
CategoryTheory.Iso.trans
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
β€”β€”
unop_whiskerLeft πŸ“–mathematicalβ€”unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Functor.unopComp
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
unop_whiskerRight πŸ“–mathematicalβ€”unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Functor.unopComp
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
leftOp πŸ“–CompOp
17 mathmath: CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_inv_app_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, CategoryTheory.simplicialCosimplicialEquiv_inverse_map, leftOp_app, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_inv_app, leftOp_id, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, CategoryTheory.Functor.leftOpRightOpEquiv_inverse_map, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_hom_app, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_hom_app_app, leftOpWhiskerRight, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, leftOpWhiskerRight_assoc, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, CategoryTheory.cosimplicialToSimplicialAugmented_map, leftOp_comp
op πŸ“–CompOp
29 mathmath: CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.Functor.sheafPushforwardContinuousNatTrans_app_val, op_id, op_whiskerRight_assoc, CategoryTheory.Adjunction.Triple.op_rightToLeft, op_whiskerRight, op_comp_assoc, op_whiskerLeft_assoc, equifibered_op_iff, CategoryTheory.Pretriangulated.Opposite.commShift_natTrans_op_int, CategoryTheory.TwoSquare.natTrans_op, CategoryTheory.Adjunction.rightOp_counit, op_app, op_comp, CategoryTheory.Adjunction.op_unit, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.Adjunction.Triple.leftToRight_op, CategoryTheory.Adjunction.leftOp_counit, coequifibered_op_iff, Coequifibered.op, CategoryTheory.NatIso.op_hom, CategoryTheory.NatIso.op_inv, op_whiskerLeft, CategoryTheory.Limits.Cocone.op_Ο€, Equifibered.op, CategoryTheory.Adjunction.op_counit, CategoryTheory.Limits.Cone.op_ΞΉ
removeLeftOp πŸ“–CompOp
2 mathmath: removeLeftOp_id, removeLeftOp_app
removeOp πŸ“–CompOp
6 mathmath: CategoryTheory.Limits.Cone.unop_ΞΉ, CategoryTheory.Limits.Cocone.unop_Ο€, removeOp_id, CategoryTheory.NatIso.removeOp_inv, CategoryTheory.NatIso.removeOp_hom, removeOp_app
removeRightOp πŸ“–CompOp
4 mathmath: CategoryTheory.Limits.coneOfCoconeRightOp_Ο€, CategoryTheory.Limits.coconeOfConeRightOp_ΞΉ, removeRightOp_app, removeRightOp_id
removeUnop πŸ“–CompOp
4 mathmath: removeUnop_app, CategoryTheory.Limits.coneOfCoconeUnop_Ο€, CategoryTheory.Limits.coconeOfConeUnop_ΞΉ, removeUnop_id
rightOp πŸ“–CompOp
18 mathmath: CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_inv_app_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, Equifibered.rightOp, rightOp_comp, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, rightOpWhiskerRight, CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, CategoryTheory.Limits.coneRightOpOfCocone_Ο€, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_hom_app, rightOpWhiskerRight_assoc, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_hom_app_app, rightOp_app, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, Coequifibered.rightOp, CategoryTheory.Limits.coconeRightOpOfCone_ΞΉ, CategoryTheory.simplicialToCosimplicialAugmented_map_right, rightOp_id
unop πŸ“–CompOp
20 mathmath: CategoryTheory.Adjunction.leftOp_unit, unop_whiskerLeft, unop_comp_assoc, unop_whiskerLeft_assoc, unop_whiskerRight, CategoryTheory.Adjunction.unop_counit, unop_id, CategoryTheory.Adjunction.rightOp_unit, equifibered_unop_iff, coequifibered_unop_iff, Coequifibered.unop, Equifibered.unop, CategoryTheory.NatIso.unop_inv, CategoryTheory.Limits.coconeUnopOfCone_ΞΉ, unop_whiskerRight_assoc, CategoryTheory.Limits.coneUnopOfCocone_Ο€, CategoryTheory.NatIso.unop_hom, CategoryTheory.Adjunction.unop_unit, unop_app, unop_comp

Theorems

NameKindAssumesProvesValidatesDepends On
leftOpWhiskerRight πŸ“–mathematicalβ€”leftOp
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor.leftOpComp
CategoryTheory.Iso.inv
β€”ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftOpWhiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.comp
leftOp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor.leftOpComp
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftOpWhiskerRight
leftOp_app πŸ“–mathematicalβ€”app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
leftOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
β€”β€”
leftOp_comp πŸ“–mathematicalβ€”leftOp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftOp
β€”β€”
leftOp_id πŸ“–mathematicalβ€”leftOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftOp
β€”β€”
op_app πŸ“–mathematicalβ€”app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
β€”β€”
op_comp πŸ“–mathematicalβ€”op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
op_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.op
op
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
op_comp
op_id πŸ“–mathematicalβ€”op
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”β€”
op_whiskerLeft πŸ“–mathematicalβ€”op
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor.opComp
CategoryTheory.Iso.inv
β€”ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
op_whiskerLeft_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.comp
op
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor.opComp
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
op_whiskerLeft
op_whiskerRight πŸ“–mathematicalβ€”op
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor.opComp
CategoryTheory.Iso.inv
β€”ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
op_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.comp
op
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.opComp
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
op_whiskerRight
removeLeftOp_app πŸ“–mathematicalβ€”app
Opposite
CategoryTheory.Category.opposite
removeLeftOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.leftOp
Opposite.op
β€”β€”
removeLeftOp_id πŸ“–mathematicalβ€”removeLeftOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftOp
β€”β€”
removeOp_app πŸ“–mathematicalβ€”app
removeOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Opposite.op
β€”β€”
removeOp_id πŸ“–mathematicalβ€”removeOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.op
β€”β€”
removeRightOp_app πŸ“–mathematicalβ€”app
Opposite
CategoryTheory.Category.opposite
removeRightOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.rightOp
Opposite.unop
β€”β€”
removeRightOp_id πŸ“–mathematicalβ€”removeRightOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightOp
β€”β€”
removeUnop_app πŸ“–mathematicalβ€”app
Opposite
CategoryTheory.Category.opposite
removeUnop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.unop
Opposite.unop
β€”β€”
removeUnop_id πŸ“–mathematicalβ€”removeUnop
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
Opposite
CategoryTheory.Category.opposite
β€”β€”
rightOpWhiskerRight πŸ“–mathematicalβ€”rightOp
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightOp
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor.rightOpComp
CategoryTheory.Iso.inv
β€”ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
rightOpWhiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightOp
CategoryTheory.Functor.comp
rightOp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
CategoryTheory.Functor.rightOpComp
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightOpWhiskerRight
rightOp_app πŸ“–mathematicalβ€”app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
rightOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.op
β€”β€”
rightOp_comp πŸ“–mathematicalβ€”rightOp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightOp
β€”β€”
rightOp_id πŸ“–mathematicalβ€”rightOp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightOp
β€”β€”
unop_app πŸ“–mathematicalβ€”app
CategoryTheory.Functor.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
β€”β€”
unop_comp πŸ“–mathematicalβ€”unop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
β€”β€”
unop_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
unop
Opposite
CategoryTheory.Category.opposite
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unop_comp
unop_id πŸ“–mathematicalβ€”unop
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
β€”β€”
unop_whiskerLeft πŸ“–mathematicalβ€”unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Iso.hom
CategoryTheory.Functor.unopComp
CategoryTheory.Iso.inv
β€”ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
unop_whiskerLeft_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
unop
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor.unopComp
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unop_whiskerLeft
unop_whiskerRight πŸ“–mathematicalβ€”unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Iso.hom
CategoryTheory.Functor.unopComp
CategoryTheory.Iso.inv
β€”ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
unop_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
unop
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.unopComp
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unop_whiskerRight

Quiver.Hom

Theorems

NameKindAssumesProvesValidatesDepends On
op_inj πŸ“–mathematicalβ€”Quiver.Hom
Opposite
Quiver.opposite
Opposite.op
op
β€”β€”
op_unop πŸ“–mathematicalβ€”op
Opposite.unop
unop
β€”β€”
unop_inj πŸ“–mathematicalβ€”Quiver.Hom
Opposite
Quiver.opposite
Opposite.unop
unop
β€”β€”
unop_mk πŸ“–mathematicalβ€”unop
Opposite
Quiver.opposite
Opposite.op
Quiver.Hom
Opposite.unop
β€”β€”
unop_op πŸ“–mathematicalβ€”unop
Opposite.op
op
β€”β€”
unop_op' πŸ“–mathematicalβ€”unopβ€”β€”

---

← Back to Index