Documentation Verification Report

PEmpty

📁 Source: Mathlib/CategoryTheory/PEmpty.lean

Statistics

MetricCount
Definitionsempty, emptyExt, isEmptyExt, uniqueFromEmpty, emptyEquivalence, equivalenceOfIsEmpty, functorOfIsEmpty
7
Theoremsempty_ext', instIsEmptyDiscrete
2
Total9

CategoryTheory

Definitions

NameCategoryTheorems
emptyEquivalence 📖CompOp
equivalenceOfIsEmpty 📖CompOp
functorOfIsEmpty 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsEmptyDiscrete 📖mathematicalIsEmpty
Discrete
Function.isEmpty

CategoryTheory.Functor

Definitions

NameCategoryTheorems
empty 📖CompOp
28 mathmath: CategoryTheory.Limits.BinaryFan.rightUnitor_hom, CategoryTheory.Limits.asEmptyCocone_pt, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.Over.preservesTerminalIso_pullback, CategoryTheory.Limits.asEmptyCone_pt, CategoryTheory.Limits.PreservesTerminal.of_iso_comparison, CategoryTheory.IsInitial.isVanKampenColimit, CategoryTheory.Limits.BinaryFan.rightUnitor_inv, CategoryTheory.Presieve.preservesTerminal_of_isSheaf_for_empty, SSet.hoFunctor.preservesTerminal, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.leftUnitor_naturality, CategoryTheory.Limits.preservesInitial_of_isIso, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.triangle, CategoryTheory.Limits.preservesTerminal_of_iso, CategoryTheory.Limits.asEmptyCocone_ι_app, preservesInitialObject_of_preservesZeroMorphisms, CategoryTheory.Limits.asEmptyCone_π_app, Monoidal.ε_of_cartesianMonoidalCategory, CategoryTheory.Limits.BinaryFan.leftUnitor_hom, CategoryTheory.Limits.PreservesInitial.of_iso_comparison, preservesTerminalObject_of_preservesZeroMorphisms, CategoryTheory.IsSifted.colim_preservesTerminal_of_isSifted, CategoryTheory.Limits.BinaryFan.leftUnitor_inv, CategoryTheory.Limits.preservesTerminal_of_isIso, CategoryTheory.CartesianMonoidalCategory.preservesLimit_empty_of_isIso_terminalComparison, CategoryTheory.Limits.preservesInitial_of_iso, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_id, CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts.rightUnitor_naturality
emptyExt 📖CompOp
isEmptyExt 📖CompOp
uniqueFromEmpty 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
empty_ext' 📖ext

---

← Back to Index