fromPUnit 📖 | CompOp | 1176 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CommRingCat.tensorProd_map_right, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.CostructuredArrow.homMk'_id, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.StructuredArrow.projectSubobject_mk, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Bicategory.RightExtension.w_assoc, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.CostructuredArrow.hom_eq_iff, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_pt, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_hom_app, CategoryTheory.CostructuredArrow.mk_hom_eq_self, LeftExtension.precomp₂_obj_hom_app, CategoryTheory.CostructuredArrow.toOver_obj_left, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_right, CategoryTheory.MonoOver.mk_coe, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.StructuredArrow.map_obj_right, CategoryTheory.StructuredArrow.mapIso_functor_obj_left, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.Bicategory.LeftLift.whiskering_map, CategoryTheory.MonoOver.congr_unitIso, CategoryTheory.OverPresheafAux.unitAux_hom, CategoryTheory.Over.iteratedSliceBackward_map, LeftExtension.precomp₂_map_right, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Under.postComp_inv_app_right, CategoryTheory.Over.pullback_obj_left, CategoryTheory.Bicategory.LeftExtension.w_assoc, CategoryTheory.Over.inv_left_hom_left_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_map_right, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.StructuredArrow.homMk'_comp, CategoryTheory.Under.forgetMapInitial_inv_app, CategoryTheory.CostructuredArrow.w_assoc, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Sieve.overEquiv_pullback, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.MorphismProperty.Over.hasPullbacks, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.OverPresheafAux.restrictedYoneda_map, CategoryTheory.toOver_obj_hom, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, CategoryTheory.Bicategory.RightLift.w_assoc, CategoryTheory.Sieve.ofArrows_category', CategoryTheory.Over.comp_left_assoc, CategoryTheory.Under.epi_right_of_epi, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_right_as, CategoryTheory.MorphismProperty.Over.instHasTerminalTopOfContainsIdentities, CategoryTheory.StructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Under.postCongr_inv_app_right, CategoryTheory.Under.mono_right_of_mono, CategoryTheory.CostructuredArrow.pre_obj_hom, CategoryTheory.Over.hom_left_inv_left, CategoryTheory.StructuredArrow.toUnder_obj_left, RightExtension.postcompose₂_obj_left_map, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Over.forgetMapTerminal_hom_app, CategoryTheory.OverPresheafAux.restrictedYoneda_obj, CategoryTheory.Over.mk_left, CategoryTheory.Bicategory.LeftExtension.ofCompId_right, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, RightExtension.postcompose₂_obj_right, LeftExtension.postcomp₁_map_right_app, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.Over.epi_iff_epi_left, CategoryTheory.Over.OverMorphism.ext_iff, CategoryTheory.StructuredArrow.map₂_obj_right, CategoryTheory.CostructuredArrow.mapIso_functor_obj_hom, CommRingCat.mkUnder_ext_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, Profinite.Extend.cone_π_app, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.g_app, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, CategoryTheory.MorphismProperty.Over.map_obj_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, leftExtensionEquivalenceOfIso₁_functor_obj_left, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.CostructuredArrow.toOver_obj_right, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Bicategory.LeftLift.w_assoc, LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, AlgebraicGeometry.Scheme.locallyCoverDense_of_le, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_left, RightExtension.coneAt_pt, CategoryTheory.CostructuredArrow.eq_mk, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, CategoryTheory.MorphismProperty.Under.mk_hom, LeftExtension.postcomp₁_obj_left, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.StructuredArrow.map₂_map_right, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as, CategoryTheory.toOver_obj_left, CommRingCat.toAlgHom_comp, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_hom, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, ι_leftKanExtensionObjIsoColimit_inv, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, LeftExtension.precomp_map_right, CategoryTheory.Over.toUnit_left, LeftExtension.precomp₂_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_right, RightExtension.coneAt_π_app, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, CategoryTheory.Limits.Cocone.underPost_ι_app, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, CategoryTheory.Over.braiding_inv_left, RightExtension.postcomp₁_obj_left_map, CategoryTheory.MorphismProperty.Over.mapCongr_inv_app_left, CategoryTheory.CostructuredArrow.post_obj, RightExtension.postcomp₁_map_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Over.iteratedSliceForwardIsoPost_inv_app, CategoryTheory.toOverUnit_map_left, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceForwardOver, CategoryTheory.StructuredArrow.eta_hom_right, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.CostructuredArrow.map₂_obj_right, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.MorphismProperty.under_iff, CategoryTheory.StructuredArrow.eta_inv_right, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Over.tensorObj_ext_iff, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_right, CategoryTheory.CostructuredArrow.map_obj_hom, LightProfinite.Extend.cocone_ι_app, CategoryTheory.Under.mk_hom, LeftExtension.precomp_obj_hom_app, CategoryTheory.Over.iteratedSliceForward_forget, CategoryTheory.CategoryOfElements.to_comma_map_right, CategoryTheory.StructuredArrow.eq_mk, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.MorphismProperty.Over.mk_hom, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, CategoryTheory.MorphismProperty.Over.pullback_obj_left, CategoryTheory.MorphismProperty.Over.map_map_left, CategoryTheory.Over.postAdjunctionRight_counit_app, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, CategoryTheory.CostructuredArrow.toOver_obj_hom, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_left_as, CategoryTheory.Sieve.overEquiv_le_overEquiv_iff, CategoryTheory.MonoOver.map_obj_left, CategoryTheory.ChosenPullbacksAlong.snd'_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.CostructuredArrow.homMk'_mk_id, CategoryTheory.Limits.Cocone.fromCostructuredArrow_ι_app, LeftExtension.coconeAtWhiskerRightIso_inv_hom, CategoryTheory.Limits.Cone.fromStructuredArrow_π_app, CategoryTheory.WithTerminal.commaFromOver_map_left, RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.Bicategory.LeftExtension.ofCompId_left_as, LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_π, CategoryTheory.StructuredArrow.id_right, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Under.pushout_map, CategoryTheory.Over.mapCongr_inv_app_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_right_as, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_left_as, CategoryTheory.MorphismProperty.Over.Hom.ext_iff, CategoryTheory.StructuredArrow.map₂_obj_left, CategoryTheory.Sieve.ofArrows_category, CategoryTheory.Over.mapCongr_hom_app_left, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.Over.postCongr_inv_app_left, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.Over.mk_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_left, CategoryTheory.StructuredArrow.preEquivalence_unitIso, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.OverPresheafAux.counitForward_naturality₁, CategoryTheory.Over.mapComp_hom_app_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_right, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, LeftExtension.postcompose₂_obj_right_map, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Over.preservesTerminalIso_pullback, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_pt, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, CategoryTheory.Bicategory.LeftExtension.whiskering_map, CategoryTheory.Under.map_map_right, CategoryTheory.Over.opEquivOpUnder_inverse_obj, CategoryTheory.CostructuredArrow.mkPrecomp_left, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.MorphismProperty.instFaithfulOverTopOverForget, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, RightExtension.mk_hom, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, leftExtensionEquivalenceOfIso₁_inverse_map_left, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.Over.post_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.pre_obj_left, CategoryTheory.Over.iteratedSliceBackward_forget, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, leftExtensionEquivalenceOfIso₁_inverse_obj_left, CategoryTheory.Over.postCongr_hom_app_left, CategoryTheory.MorphismProperty.Over.map_comp, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.toOverUnit_obj_left, CategoryTheory.CostructuredArrow.post_map, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.Under.map_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.StructuredArrow.mapIso_inverse_obj_right, CategoryTheory.Under.post_obj, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CostructuredArrow.map_obj_right, CategoryTheory.Over.iteratedSliceBackward_forget_forget, CategoryTheory.CostructuredArrow.proj_obj, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.MorphismProperty.Over.instPreservesFiniteLimitsTopPullback, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_hom, CategoryTheory.CostructuredArrow.mkPrecomp_right, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.CostructuredArrow.mapIso_functor_obj_left, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.Under.eqToHom_right, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, CategoryTheory.CostructuredArrow.map_obj_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.eta_hom_left, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Sieve.overEquiv_symm_iff, CategoryTheory.Sieve.functorPushforward_over_map, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.Over.associator_hom_left_fst, final_fromPUnit_of_isTerminal, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.CategoryOfElements.toStructuredArrow_obj, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_left_as, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, CategoryTheory.StructuredArrow.preEquivalence_inverse, CategoryTheory.StructuredArrow.preEquivalence_functor, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, CategoryTheory.Abelian.Pseudoelement.pseudoApply_mk', CategoryTheory.WithInitial.commaFromUnder_map_left, CategoryTheory.StructuredArrow.homMk'_mk_comp, CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, CategoryTheory.CostructuredArrow.prodInverse_obj, LeftExtension.postcompose₂ObjMkIso_inv_right_app, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_hom, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.Over.map_map_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.MorphismProperty.Over.mapId_inv_app_left, CategoryTheory.Under.costar_obj_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.MonoOver.image_map, CategoryTheory.Under.under_left, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.GrothendieckTopology.mem_over_iff, CategoryTheory.OverPresheafAux.counitForward_val_snd, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Over.tensorUnit_hom, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.StructuredArrow.mkPostcomp_left, CategoryTheory.StructuredArrow.left_eq_id, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.Under.post_map, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Over.inv_left_hom_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CommRingCat.mkUnder_hom, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, AlgebraicGeometry.opensDiagram_map, CategoryTheory.CostructuredArrow.id_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, HomotopicalAlgebra.cofibrations_over_iff, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Over.forgetMapTerminal_inv_app, CategoryTheory.MorphismProperty.Over.mapCongr_hom_app_left, CategoryTheory.Subobject.inf_eq_map_pullback', CategoryTheory.StructuredArrow.eqToHom_right, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Over.eqToHom_left, CategoryTheory.Sieve.overEquiv_top, essImage_underPost, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_hom_right, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, LeftExtension.postcompose₂_map_right_app, CategoryTheory.Under.map_obj_hom, CommRingCat.Under.tensorProdEqualizer_ι, CategoryTheory.CostructuredArrow.map_map_right, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_right_as, AlgebraicGeometry.opensDiagramι_app, CategoryTheory.StructuredArrow.homMk'_left, HomotopicalAlgebra.instCofibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.OverClass.fromOver_over, essImage.of_underPost, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, CategoryTheory.MonoOver.image_obj, TopologicalSpace.Opens.coe_overEquivalence_functor_obj, CategoryTheory.OverClass.asOver_left, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, CategoryTheory.Over.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_left, CategoryTheory.Over.mapPullbackAdj_unit_app, CategoryTheory.MorphismProperty.Over.forget_comp_forget_map, RightExtension.postcomp₁_obj_left_obj, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.Over.mapId_inv_app_left, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, CommRingCat.toAlgHom_id, CategoryTheory.StructuredArrow.mono_iff_mono_right, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Sieve.overEquiv_symm_pullback, CategoryTheory.CostructuredArrow.CreatesConnected.natTransInCostructuredArrow_app, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.Under.mono_iff_mono_right, CategoryTheory.WithInitial.liftFromUnder_obj_obj, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.ChosenPullbacksAlong.iso_pullback_obj, CategoryTheory.StructuredArrow.hom_eq_iff, CategoryTheory.Under.postEquiv_counitIso, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ι_app, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, CommRingCat.mkUnder_right, CategoryTheory.Over.conePost_map_hom, CategoryTheory.Under.postComp_hom_app_right, CategoryTheory.MonoOver.bot_left, SSet.Truncated.rightExtensionInclusion_right_as, CategoryTheory.Presieve.ofArrows_category, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, RightExtension.coneAtWhiskerRightIso_inv_hom, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, CategoryTheory.OverPresheafAux.counitAuxAux_inv, LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.StructuredArrow.mk_left, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, CategoryTheory.MonoOver.map_obj_arrow, CategoryTheory.CategoryOfElements.fromStructuredArrow_obj, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, CategoryTheory.CostructuredArrow.mk_right, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, CategoryTheory.Over.map_obj_hom, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.Over.postComp_inv_app_left, CategoryTheory.Bicategory.LeftExtension.whiskerIdCancel_right, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.Limits.IndObjectPresentation.yoneda_isColimit_desc, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.CostructuredArrow.eta_inv_left, CategoryTheory.MorphismProperty.over_iso_iff, leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.underToAlgebra_obj_A, toOver_obj_left, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, AlgEquiv.toUnder_inv_right_apply, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, LeftExtension.postcompose₂_obj_right_obj, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.MonoOver.w, CategoryTheory.MonoOver.bot_arrow_eq_zero, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, CategoryTheory.forgetAdjToOver_unit_app, initial_fromPUnit_of_isInitial, CategoryTheory.OverPresheafAux.counitBackward_counitForward, CategoryTheory.Over.iteratedSliceEquivOverMapIso_inv_app_left_left, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Over.iteratedSliceEquivOverMapIso_hom_app_left_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.CostructuredArrow.map₂_map_right, CommRingCat.toAlgHom_apply, CategoryTheory.StructuredArrow.toUnder_map_right, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.WithTerminal.liftFromOver_obj_obj, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_left, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.StructuredArrow.IsUniversal.hom_desc, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_pt, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_hom_right, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.CostructuredArrow.pre_obj_right, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.Over.pullback_map_left, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, CategoryTheory.Under.forgetMapInitial_hom_app, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.MorphismProperty.costructuredArrow_iso_iff, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_map_left, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, CategoryTheory.Over.sections_obj, AlgebraicGeometry.Scheme.smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology, RightExtension.precomp_obj_right, AlgebraicGeometry.opensDiagram_obj, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.MorphismProperty.instFullUnderTopUnderForget, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, leftExtensionEquivalenceOfIso₁_inverse_obj_right, CategoryTheory.Over.star_obj_left, CategoryTheory.Over.iteratedSliceEquiv_functor, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.MorphismProperty.overObj_iff, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.MorphismProperty.instIsLeftAdjointOverTopMapOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_right_as, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.StructuredArrow.homMk'_id, RightExtension.IsPointwiseRightKanExtension.isIso_hom, CategoryTheory.MonoOver.mk'_coe', RightExtension.mk_right_as, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.StructuredArrow.w_prod_snd, leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_right, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_left_as, CategoryTheory.MonoOver.mono, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.Over.associator_inv_left_fst_snd, LeftExtension.postcompose₂ObjMkIso_hom_right_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, CategoryTheory.MonoOver.forget_obj_left, CategoryTheory.WithInitial.commaFromUnder_obj_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.Over.forget_obj, CategoryTheory.CostructuredArrow.grothendieckProj_map, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.Over.star_obj_hom, RightExtension.postcomp₁_map_left_app, CategoryTheory.Under.forget_map, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, commAlgCatEquivUnder_counitIso, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, CategoryTheory.StructuredArrow.post_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, LeftExtension.postcomp₁_obj_right_map, ranObjObjIsoLimit_hom_π_assoc, CategoryTheory.Limits.IndObjectPresentation.yoneda_ι_app, TopologicalSpace.Opens.overEquivalence_counitIso_inv_app, CategoryTheory.Under.equivalenceOfIsInitial_unitIso, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.Bicategory.LeftLift.whiskerHom_right, CategoryTheory.CostructuredArrow.epi_left_of_epi, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.Bicategory.LeftExtension.ofCompId_hom, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.homMk'_left, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, CategoryTheory.StructuredArrow.homMk'_right, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, CategoryTheory.StructuredArrow.pre_map_left, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_right_as, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.CostructuredArrow.prodFunctor_obj, LeftExtension.coconeAtWhiskerRightIso_hom_hom, CategoryTheory.OverPresheafAux.counitAux_hom, RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, commAlgCatEquivUnder_inverse_obj_carrier, CategoryTheory.MorphismProperty.instFaithfulCostructuredArrowTopOverToOver, leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.CostructuredArrow.proj_map, CategoryTheory.Bicategory.LeftLift.ofIdComp_right, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.StructuredArrow.mkPostcomp_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, LeftExtension.precomp_obj_right, CategoryTheory.toOverIsoToOverUnit_hom_app_left, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, CategoryTheory.Over.w, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_map, CategoryTheory.StructuredArrow.mapIso_functor_obj_right, AlgebraicGeometry.instHasCoproductsOfShapeOverSchemeTopMorphismPropertyOfSmall, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.StructuredArrow.prodFunctor_obj, AlgHom.toUnder_right, CategoryTheory.StructuredArrow.proj_map, LeftExtension.postcompose₂_obj_left, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, CategoryTheory.OverClass.asOverHom_left, CategoryTheory.CostructuredArrow.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.coalgebraEquivOver_counitIso, Alexandrov.lowerCone_π_app, LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, LeftExtension.precomp_obj_left, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_right, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_obj, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.StructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.mono_right_of_mono, AlgEquiv.toUnder_hom_right_apply, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.CostructuredArrow.mk_left, SSet.Truncated.rightExtensionInclusion_left, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.CostructuredArrow.homMk'_mk_comp, CategoryTheory.Over.associator_inv_left_fst_fst, leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, CategoryTheory.CostructuredArrow.right_eq_id, CategoryTheory.StructuredArrow.comp_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_right_as, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Over.snd_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Over.over_right, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, commAlgCatEquivUnder_unitIso, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.Sieve.overEquiv_symm_generate, CategoryTheory.MorphismProperty.Over.mk_left, CategoryTheory.Over.whiskerRight_left_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.MorphismProperty.structuredArrowObj_iff, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.WithTerminal.commaFromOver_obj_hom_app, CategoryTheory.StructuredArrow.map_obj_left, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, CategoryTheory.MorphismProperty.CostructuredArrow.mk_left, RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, HomotopicalAlgebra.instFibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.iteratedSliceEquiv_unitIso, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π_assoc, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.Under.mk_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, toOver_map_left, CategoryTheory.Over.star_map_left, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Under.postMap_app, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.OverPresheafAux.restrictedYonedaObj_obj, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_inv_right, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Under.Hom.ext_iff, CategoryTheory.OverClass.asOver_hom, CategoryTheory.Over.η_pullback_left, RightExtension.mk_left, toUnder_obj_right, CategoryTheory.Over.postAdjunctionRight_unit_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.Under.hom_right_inv_right, CategoryTheory.Over.id_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.OverPresheafAux.restrictedYonedaObjMap₁_app, CategoryTheory.MorphismProperty.Under.mk_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, CategoryTheory.Over.postComp_hom_app_left, RightExtension.postcomp₁_obj_right, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, LeftExtension.postcompose₂_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Over.post_obj, LeftExtension.postcomp₁_obj_right_obj, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, CategoryTheory.StructuredArrow.toUnder_obj_hom, RightExtension.postcompose₂_obj_hom_app, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, CategoryTheory.MorphismProperty.Over.instPreservesFiniteLimitsTopOverForget, RightExtension.precomp_obj_hom_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, RightExtension.precomp_map_right, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Under.postCongr_hom_app_right, CategoryTheory.Over.mapId_hom_app_left, CategoryTheory.Bicategory.LeftLift.ofIdComp_hom, CategoryTheory.WithTerminal.commaFromOver_map_right, CategoryTheory.MonoOver.w_assoc, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.MorphismProperty.over_iff, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.MorphismProperty.Under.forget_comp_forget_map, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, CategoryTheory.MorphismProperty.instFullOverTopOverForget, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.Over.whiskerLeft_left_fst_assoc, RightExtension.postcompose₂ObjMkIso_inv_left_app, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_left, CategoryTheory.MonoOver.pullback_obj_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_left, CategoryTheory.Under.pushout_obj, CategoryTheory.MorphismProperty.Over.w, RightExtension.postcompose₂_map_left_app, CategoryTheory.Over.coprodObj_obj, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, CategoryTheory.StructuredArrow.mk_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, RightExtension.postcompose₂_obj_left_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, CategoryTheory.CostructuredArrow.IsUniversal.fac, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', AlgebraicGeometry.Scheme.instLocallyCoverDenseOverTopMorphismPropertyOverForgetOverGrothendieckTopology, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.CostructuredArrow.grothendieckProj_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, CategoryTheory.Over.equivalenceOfIsTerminal_unitIso, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, TopologicalSpace.Opens.coe_overEquivalence_inverse_obj_left, CategoryTheory.Over.iteratedSliceEquiv_counitIso, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.StructuredArrow.w, RightExtension.postcompose₂_map_right, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_pt, commAlgCatEquivUnder_inverse_map, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.Under.forget_obj, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.WithTerminal.liftFromOver_obj_map, LeftExtension.precomp_map_left, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, LeftExtension.precomp₂_obj_right, CategoryTheory.StructuredArrow.mapIso_functor_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, ranObjObjIsoLimit_hom_π, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.overToCoalgebra_obj_A, Alexandrov.projSup_obj, CategoryTheory.underToAlgebra_map_f, CategoryTheory.Over.postEquiv_unitIso, LeftExtension.coconeAt_pt, CategoryTheory.MorphismProperty.CostructuredArrow.Hom.ext_iff, Profinite.Extend.cocone_ι_app, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, LeftExtension.postcomp₁_map_left, RightExtension.coneAtFunctor_map_hom, CategoryTheory.MonoOver.forget_obj_hom, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Over.rightUnitor_hom_left, AlgebraicGeometry.Scheme.smallGrothendieckTopology_eq_toGrothendieck_smallPretopology, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.toOver_map_left, CategoryTheory.Over.sections_map, toUnder_map_right, CategoryTheory.ChosenPullbacksAlong.fst'_left, RightExtension.coneAtWhiskerRightIso_hom_hom, CategoryTheory.Bicategory.LeftLift.whiskerIdCancel_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Under.mapPushoutAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_obj, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.CostructuredArrow.homMk'_comp, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, CategoryTheory.Over.map_obj_left, CategoryTheory.Over.epi_left_of_epi, AlgebraicGeometry.instIsLocallyDirectedCompSchemeOverOverTopMorphismPropertyForgetForgetForget, LeftExtension.mk_right, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.Sieve.overEquiv_symm_top, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_hom_right, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, CommRingCat.Under.equalizerFork_ι, CategoryTheory.CostructuredArrow.eqToHom_left, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.Under.postAdjunctionLeft_counit_app, CategoryTheory.Under.inv_right_hom_right, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.instHomIsOverLeftDiscretePUnit, CategoryTheory.Over.braiding_hom_left, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_hom, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.MorphismProperty.Over.pullback_obj_hom, CategoryTheory.StructuredArrow.projectSubobject_factors, leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.overToCoalgebra_obj_a, CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_right_as, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.CostructuredArrow.hom_ext_iff, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_left_as, CategoryTheory.Under.hom_right_inv_right_assoc, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.MorphismProperty.underObj_iff, CategoryTheory.MonoOver.inf_obj, CategoryTheory.Presheaf.tautologicalCocone_ι_app, CategoryTheory.CostructuredArrow.pre_map_right, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, CategoryTheory.StructuredArrow.mk_hom_eq_self, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.MonoOver.top_left, CategoryTheory.Over.tensorUnit_left, CategoryTheory.Presheaf.tautologicalCocone'_ι_app, CategoryTheory.MorphismProperty.instFullCostructuredArrowTopOverToOver, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Over.hom_left_inv_left_assoc, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.Under.opEquivOpOver_inverse_obj, Types.monoOverEquivalenceSet_unitIso, ranObjObjIsoLimit_inv_π, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.Under.UnderMorphism.ext_iff, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Over.iteratedSliceEquiv_inverse, CategoryTheory.StructuredArrow.mapIso_inverse_obj_left, CategoryTheory.Over.coe_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AlgebraicGeometry.Scheme.kerFunctor_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.Over.forgetCocone_ι_app, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Under.costar_map_left, CategoryTheory.Over.whiskerRight_left_fst_assoc, CategoryTheory.StructuredArrow.pre_obj_hom, CategoryTheory.CostructuredArrow.mapIso_functor_obj_right, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Bicategory.LeftExtension.whiskerHom_right, CategoryTheory.Limits.Cone.overPost_π_app, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.StructuredArrow.prodInverse_obj, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.StructuredArrow.preEquivalence_counitIso, RightExtension.postcomp₁_obj_hom_app, CategoryTheory.StructuredArrow.ext_iff, CategoryTheory.Over.forget_map, CategoryTheory.Subobject.representative_coe, ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, CategoryTheory.WithTerminal.liftFromOver_map_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_left_as, CategoryTheory.Sieve.overEquiv_generate, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Bicategory.LeftLift.ofIdComp_left_as, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, CategoryTheory.Subobject.inf_eq_map_pullback, CategoryTheory.Over.postMap_app, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_right, CategoryTheory.Under.mkIdInitial_to_right, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_right_as, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, TopologicalSpace.Opens.overEquivalence_inverse_obj_right_as, CategoryTheory.StructuredArrow.proj_obj, CategoryTheory.Under.costar_obj_hom, LeftExtension.coconeAt_ι_app, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, LeftExtension.mk_left_as, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, AlgebraicGeometry.Scheme.restrictFunctor_obj_left, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.StructuredArrow.map_obj_hom, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, essentiallySmall_of_le, CategoryTheory.Over.opEquivOpUnder_functor_map, LeftExtension.precomp₂_map_left, CategoryTheory.OverPresheafAux.counitForward_counitBackward, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, SSet.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, AlgebraicGeometry.Scheme.restrictFunctor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.CostructuredArrow.pre_map_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, HomotopicalAlgebra.weakEquivalences_over_iff, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CategoryTheory.Under.inv_right_hom_right_assoc, CategoryTheory.CostructuredArrow.ext_iff, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, CategoryTheory.Over.mkIdTerminal_from_left, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Under.postEquiv_unitIso, CategoryTheory.CostructuredArrow.projectQuotient_factors, essImage_overPost, TopologicalSpace.Opens.overEquivalence_counitIso_hom_app, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.TwoSquare.lanBaseChange_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.pullback_obj_hom, CategoryTheory.Over.forgetAdjStar_unit_app_left, HomotopicalAlgebra.instWeakEquivalenceLeftDiscretePUnitOfOver, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor', CategoryTheory.CostructuredArrow.epi_iff_epi_left, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Over.tensorObj_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_right_as, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.StructuredArrow.post_obj, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceForwardOver, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Abelian.app_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_left, leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.toOverUnitPullback_hom_app_left, CategoryTheory.Bicategory.LeftExtension.w, CategoryTheory.Under.id_right, CategoryTheory.instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, CategoryTheory.Over.ε_pullback_left, CategoryTheory.Over.coprod_map_app, ι_leftKanExtensionObjIsoColimit_hom_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.IsUniversal.fac_assoc, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_ι, CategoryTheory.CostructuredArrow.map₂_obj_hom, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.CostructuredArrow.map₂_obj_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, CategoryTheory.MorphismProperty.Over.mapId_hom_app_left, CategoryTheory.Under.postAdjunctionLeft_unit_app, CategoryTheory.StructuredArrow.IsUniversal.fac, AlgebraicGeometry.Scheme.restrictFunctor_obj_hom, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_left_as, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.OverPresheafAux.counitAuxAux_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, CategoryTheory.StructuredArrow.toUnder_obj_right, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.Over.coprodObj_map, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, CategoryTheory.toOverUnitPullback_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Under.w_assoc, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.StructuredArrow.map₂_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Limits.IndObjectPresentation.yoneda_F, AlgebraicGeometry.instHasFiniteCoproductsOverSchemeTopMorphismProperty, CategoryTheory.Under.forgetCone_π_app, CategoryTheory.Over.iteratedSliceForward_obj, essImage.of_overPost, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, RightExtension.postcompose₂ObjMkIso_hom_left_app, CategoryTheory.CostructuredArrow.projectQuotient_mk, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_left, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, CategoryTheory.Over.w_assoc, CategoryTheory.OverPresheafAux.counitForward_val_fst, leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.StructuredArrow.homMk'_mk_id, CategoryTheory.CostructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, Alexandrov.projSup_map, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Bicategory.RightLift.w, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_inv_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_fst, CategoryTheory.StructuredArrow.pre_obj_left, CategoryTheory.Under.w, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.Sieve.overEquiv_iff, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, CategoryTheory.Over.opEquivOpUnder_functor_obj, HomotopicalAlgebra.fibrations_over_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, CommRingCat.Under.equalizer_comp, costructuredArrowMapCocone_ι_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_hom_app, CategoryTheory.Bicategory.RightExtension.w, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.MorphismProperty.CostructuredArrow.mk_hom, CategoryTheory.Over.tensorObj_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.toOverUnit_obj_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_hom, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.StructuredArrow.hom_ext_iff, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_hom, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Over.mapComp_inv_app_left, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, LeftExtension.mk_hom, CategoryTheory.Under.comp_right, CategoryTheory.Over.mono_left_of_mono, CategoryTheory.MorphismProperty.costructuredArrowObj_iff, CategoryTheory.MorphismProperty.Over.map_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.CostructuredArrow.IsUniversal.hom_desc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.MonoOver.isIso_iff_isIso_left, CategoryTheory.StructuredArrow.pre_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.MorphismProperty.instFaithfulUnderTopUnderForget, CategoryTheory.MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, RightExtension.precomp_obj_left, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Bicategory.LeftLift.w, leftExtensionEquivalenceOfIso₁_functor_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, structuredArrowMapCone_π_app, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_left, CategoryTheory.OverPresheafAux.counitForward_naturality₂, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Localization.structuredArrowEquiv_apply
|