Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Pi/Basic.lean

Statistics

MetricCount
Definitionspi, pi, pi', pi'CompEval, pi, pi', pi, pi', comap, comapComp, comapEvalIsoEval, comapId, eqToEquivalence, eqToEquivalenceFunctorIso, equivalenceOfEquiv, eval, evalCompEqToEquivalenceFunctor, instCategoryComp, isoApp, isoMk, optionEquivalence, sum, sumElimCategory, pi
24
TheoremsinstIsEquivalenceForallPi, pi_counitIso, pi_functor, pi_inverse, pi_unitIso, eqToHom_proj, pi'CompEval_hom_app, pi'CompEval_inv_app, pi'_eval, pi'_map, pi'_obj, pi_ext, pi_map, pi_obj, pi'_hom, pi'_inv, pi_hom, pi_inv, pi'_app, pi_app, comapComp_hom_app, comapComp_inv_app, comapEvalIsoEval_hom_app, comapEvalIsoEval_inv_app, comapId_hom_app, comapId_inv_app, comap_map, comap_obj, comp_apply, eqToEquivalenceFunctorIso_hom, eqToEquivalenceFunctorIso_inv, equivalenceOfEquiv_counitIso, equivalenceOfEquiv_functor, equivalenceOfEquiv_inverse, equivalenceOfEquiv_unitIso, evalCompEqToEquivalenceFunctor_hom, evalCompEqToEquivalenceFunctor_inv, eval_map, eval_obj, ext, ext_iff, id_apply, isoApp_hom, isoApp_inv, isoApp_refl, isoApp_symm, isoApp_trans, isoMk_hom, isoMk_inv, optionEquivalence_counitIso, optionEquivalence_functor, optionEquivalence_inverse, optionEquivalence_unitIso, sum_map_app, sum_obj_map, sum_obj_obj, isIso_pi_iff
57
Total81

CategoryTheory

Definitions

NameCategoryTheorems
pi 📖CompOp
135 mathmath: Pi.monoidalPi'_η, HomologicalComplex.rightUnitor'_inv, Pi.monoidalPi_δ, Limits.pointwiseProduct_obj, MorphismProperty.IsInvertedBy.pi, NatIso.pi_hom, Pi.monoidalCategoryStruct_tensorHom, HomologicalComplex.leftUnitor'_inv_comm, Functor.pi'CompEval_hom_app, Pi.isoApp_refl, piEquivalenceFunctorDiscrete_inverse_obj, Pi.opLaxMonoidalPi_η, NatIso.pi'_inv, Equivalence.pi_inverse, Limits.ι_colimitPointwiseProductToProductColimit_π, GradedObject.comapEquiv_counitIso, Pi.equivalenceOfEquiv_unitIso, Pi.equivalenceOfEquiv_counitIso, MorphismProperty.Pi.containsIdentities, Pi.sum_obj_obj, Pi.braiding_inv_apply, Pi.laxMonoidalPi'_ε, Pi.associator_hom_apply, Equivalence.pi_functor, isCardinalFiltered_pi, initial_eval, Pi.monoidalClosed_closed_adj_counit, piEquivalenceFunctorDiscrete_functor_obj, Pi.closedCounit_app, isIso_pi_iff, Pi.isoApp_symm, FundamentalGroupoidFunctor.piToPiTop_map, Equivalence.instIsEquivalenceForallPi, Pi.closedUnit_app, Limits.IsIPC.isIso, Pi.monoidalCategoryStruct_whiskerLeft, instIsCofilteredOrEmptyForall, Pi.isoApp_hom, Pi.left_unitor_inv_apply, Equivalence.pi_unitIso, Pi.evalCompEqToEquivalenceFunctor_hom, Pi.optionEquivalence_unitIso, Pi.isoApp_trans, Pi.comp_apply, Pi.comap_obj, Functor.pi_map, GradedObject.comapEquiv_unitIso, HomologicalComplex.leftUnitor'_inv_comm_assoc, Limits.coconePointwiseProduct_ι_app, Pi.laxMonoidalPi'_μ, piEquivalenceFunctorDiscrete_unitIso, Pi.monoidalClosed_closed_rightAdj, Pi.η_def, NatTrans.pi'_app, Limits.pointwiseProduct_map, Pi.left_unitor_hom_apply, Pi.isoApp_left_unitor, Limits.pointwiseProductCompEvaluation_inv_app, Pi.id_apply, HomologicalComplex.leftUnitor'_inv, instIsCofilteredForall, Limits.colimitPointwiseProductToProductColimit_app, Pi.isoApp_inv, Functor.eqToHom_proj, Pi.opLaxMonoidalPi'_η, Functor.pi'CompEval_inv_app, NatTrans.pi_app, Pi.sum_obj_map, Pi.monoidalCategoryStruct_tensorUnit, Pi.optionEquivalence_inverse, Pi.monoidalCategoryStruct_tensorObj, Pi.optionEquivalence_counitIso, Pi.opLaxMonoidalPi_δ, Pi.optionEquivalence_functor, Pi.monoidalClosed_closed_adj_unit, Pi.isoApp_associator, Pi.evalCompEqToEquivalenceFunctor_inv, Pi.isoMk_inv, FundamentalGroupoidFunctor.piToPiTop_obj_as, piEquivalenceFunctorDiscrete_inverse_map, NatIso.pi_inv, Pi.monoidalPi_ε, Limits.coconePointwiseProduct_pt, Pi.δ_def, Pi.ihom_map, Pi.sum_map_app, Pi.monoidalPi'_δ, Pi.monoidalCategoryStruct_whiskerRight, Pi.monoidalPi'_ε, Pi.laxMonoidalPi_ε, Limits.ι_colimitPointwiseProductToProductColimit_π_assoc, Functor.pi_obj, isGroupoidPi, Pi.eval_obj, Pi.equivalenceOfEquiv_inverse, Pi.monoidalPi_μ, Pi.ihom_obj, GradedObject.eqToHom_apply, Pi.right_unitor_inv_apply, Limits.pointwiseProductCompEvaluation_hom_app, Pi.isoApp_braiding, final_eval, NatIso.pi'_hom, piEquivalenceFunctorDiscrete_functor_map, Pi.eval_map, Pi.monoidalPi_η, Pi.associator_inv_apply, Functor.IsLocalization.pi, Functor.pi'_map, Functor.pi'_eval, Pi.isoMk_hom, Pi.isoApp_right_unitor, Pi.instIsMonoidalForallPi, Pi.braiding_hom_apply, Pi.μ_def, Limits.Types.isIso_colimitPointwiseProductToProductColimit, HomologicalComplex.rightUnitor'_inv_comm, Pi.comapComp_hom_app, piEquivalenceFunctorDiscrete_counitIso, Pi.equivalenceOfEquiv_functor, Equivalence.pi_counitIso, Pi.ε_def, Pi.opLaxMonoidalPi'_δ, Pi.comapId_inv_app, instIsFilteredOrEmptyForall, Pi.comapEvalIsoEval_inv_app, Pi.right_unitor_hom_apply, Pi.comapEvalIsoEval_hom_app, Pi.laxMonoidalPi_μ, Pi.monoidalPi'_μ, instIsFilteredForall, Pi.comapComp_inv_app, Pi.comap_map, Pi.comapId_hom_app, Functor.pi'_obj

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_pi_iff 📖mathematicalIsIso
pi
Iso.isIso_hom
Pi.ext
IsIso.hom_inv_id
IsIso.inv_hom_id

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
pi 📖CompOp
4 mathmath: pi_inverse, pi_functor, pi_unitIso, pi_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
instIsEquivalenceForallPi 📖mathematicalCategoryTheory.Functor.IsEquivalenceCategoryTheory.pi
CategoryTheory.Functor.pi
isEquivalence_functor
pi_counitIso 📖mathematicalcounitIso
CategoryTheory.pi
pi
CategoryTheory.NatIso.pi
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.Functor.id
pi_functor 📖mathematicalfunctor
CategoryTheory.pi
pi
CategoryTheory.Functor.pi
pi_inverse 📖mathematicalinverse
CategoryTheory.pi
pi
CategoryTheory.Functor.pi
pi_unitIso 📖mathematicalunitIso
CategoryTheory.pi
pi
CategoryTheory.NatIso.pi
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse

CategoryTheory.Functor

Definitions

NameCategoryTheorems
pi 📖CompOp
19 mathmath: CategoryTheory.Pi.monoidalPi_δ, CategoryTheory.MorphismProperty.IsInvertedBy.pi, CategoryTheory.NatIso.pi_hom, CategoryTheory.Pi.opLaxMonoidalPi_η, CategoryTheory.Equivalence.pi_inverse, CategoryTheory.Equivalence.pi_functor, CategoryTheory.Equivalence.instIsEquivalenceForallPi, pi_map, CategoryTheory.NatTrans.pi_app, CategoryTheory.Pi.opLaxMonoidalPi_δ, CategoryTheory.NatIso.pi_inv, CategoryTheory.Pi.monoidalPi_ε, CategoryTheory.Pi.laxMonoidalPi_ε, pi_obj, CategoryTheory.Pi.monoidalPi_μ, CategoryTheory.Pi.monoidalPi_η, IsLocalization.pi, CategoryTheory.Pi.instIsMonoidalForallPi, CategoryTheory.Pi.laxMonoidalPi_μ
pi' 📖CompOp
22 mathmath: CategoryTheory.Pi.monoidalPi'_η, pi'CompEval_hom_app, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, CategoryTheory.Pi.laxMonoidalPi'_ε, CategoryTheory.Pi.optionEquivalence_unitIso, CategoryTheory.Pi.laxMonoidalPi'_μ, CategoryTheory.Pi.opLaxMonoidalPi'_η, pi'CompEval_inv_app, CategoryTheory.Pi.optionEquivalence_inverse, CategoryTheory.Pi.optionEquivalence_counitIso, CategoryTheory.Pi.optionEquivalence_functor, FundamentalGroupoidFunctor.piIso_inv, CategoryTheory.Pi.monoidalPi'_δ, CategoryTheory.Pi.monoidalPi'_ε, CategoryTheory.Pi.equivalenceOfEquiv_inverse, pi'_map, pi'_eval, CategoryTheory.Pi.equivalenceOfEquiv_functor, CategoryTheory.Pi.opLaxMonoidalPi'_δ, CategoryTheory.Pi.monoidalPi'_μ, pi'_obj
pi'CompEval 📖CompOp
4 mathmath: pi'CompEval_hom_app, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, pi'CompEval_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
eqToHom_proj 📖mathematicalCategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.pi
pi'CompEval_hom_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.pi
pi'
CategoryTheory.Pi.eval
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
pi'CompEval
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
pi'CompEval_inv_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.pi
pi'
CategoryTheory.Pi.eval
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
pi'CompEval
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
pi'_eval 📖mathematicalcomp
CategoryTheory.pi
pi'
CategoryTheory.Pi.eval
pi'_map 📖mathematicalmap
CategoryTheory.pi
pi'
pi'_obj 📖mathematicalobj
CategoryTheory.pi
pi'
pi_ext 📖comp
CategoryTheory.pi
CategoryTheory.Pi.eval
ext
congr_obj
congr_hom
eqToHom_proj
pi_map 📖mathematicalmap
CategoryTheory.pi
pi
pi_obj 📖mathematicalobj
CategoryTheory.pi
pi

CategoryTheory.NatIso

Definitions

NameCategoryTheorems
pi 📖CompOp
4 mathmath: pi_hom, CategoryTheory.Equivalence.pi_unitIso, pi_inv, CategoryTheory.Equivalence.pi_counitIso
pi' 📖CompOp
5 mathmath: pi'_inv, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, CategoryTheory.Pi.optionEquivalence_unitIso, pi'_hom

Theorems

NameKindAssumesProvesValidatesDepends On
pi'_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.pi
CategoryTheory.Functor.category
pi'
CategoryTheory.NatTrans.pi'
CategoryTheory.Functor.comp
CategoryTheory.Pi.eval
pi'_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.pi
CategoryTheory.Functor.category
pi'
CategoryTheory.NatTrans.pi'
CategoryTheory.Functor.comp
CategoryTheory.Pi.eval
pi_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.pi
CategoryTheory.Functor.category
CategoryTheory.Functor.pi
pi
CategoryTheory.NatTrans.pi
pi_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.pi
CategoryTheory.Functor.category
CategoryTheory.Functor.pi
pi
CategoryTheory.NatTrans.pi

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
pi 📖CompOp
4 mathmath: CategoryTheory.NatIso.pi_hom, pi_app, CategoryTheory.NatIso.pi_inv, CategoryTheory.Pi.instIsMonoidalForallPi
pi' 📖CompOp
4 mathmath: CategoryTheory.NatIso.pi'_inv, pi'_app, CategoryTheory.NatIso.pi'_hom, CategoryTheory.Pi.instIsMonoidalForallPi'

Theorems

NameKindAssumesProvesValidatesDepends On
pi'_app 📖mathematicalapp
CategoryTheory.pi
pi'
CategoryTheory.Functor.comp
CategoryTheory.Pi.eval
pi_app 📖mathematicalapp
CategoryTheory.pi
CategoryTheory.Functor.pi
pi

CategoryTheory.Pi

Definitions

NameCategoryTheorems
comap 📖CompOp
10 mathmath: CategoryTheory.GradedObject.comapEquiv_counitIso, comap_obj, CategoryTheory.GradedObject.comapEquiv_unitIso, comapComp_hom_app, comapId_inv_app, comapEvalIsoEval_inv_app, comapEvalIsoEval_hom_app, comapComp_inv_app, comap_map, comapId_hom_app
comapComp 📖CompOp
4 mathmath: CategoryTheory.GradedObject.comapEquiv_counitIso, CategoryTheory.GradedObject.comapEquiv_unitIso, comapComp_hom_app, comapComp_inv_app
comapEvalIsoEval 📖CompOp
2 mathmath: comapEvalIsoEval_inv_app, comapEvalIsoEval_hom_app
comapId 📖CompOp
2 mathmath: comapId_inv_app, comapId_hom_app
eqToEquivalence 📖CompOp
7 mathmath: eqToEquivalenceFunctorIso_hom, equivalenceOfEquiv_unitIso, equivalenceOfEquiv_counitIso, evalCompEqToEquivalenceFunctor_hom, evalCompEqToEquivalenceFunctor_inv, eqToEquivalenceFunctorIso_inv, equivalenceOfEquiv_functor
eqToEquivalenceFunctorIso 📖CompOp
3 mathmath: eqToEquivalenceFunctorIso_hom, equivalenceOfEquiv_unitIso, eqToEquivalenceFunctorIso_inv
equivalenceOfEquiv 📖CompOp
4 mathmath: equivalenceOfEquiv_unitIso, equivalenceOfEquiv_counitIso, equivalenceOfEquiv_inverse, equivalenceOfEquiv_functor
eval 📖CompOp
27 mathmath: CategoryTheory.Functor.pi'CompEval_hom_app, CategoryTheory.Grpd.piIsoPi_hom_π, CategoryTheory.NatIso.pi'_inv, equivalenceOfEquiv_unitIso, equivalenceOfEquiv_counitIso, CategoryTheory.initial_eval, evalCompEqToEquivalenceFunctor_hom, optionEquivalence_unitIso, η_def, CategoryTheory.NatTrans.pi'_app, CategoryTheory.Functor.pi'CompEval_inv_app, optionEquivalence_inverse, optionEquivalence_counitIso, optionEquivalence_functor, evalCompEqToEquivalenceFunctor_inv, δ_def, eval_obj, equivalenceOfEquiv_inverse, CategoryTheory.final_eval, CategoryTheory.NatIso.pi'_hom, eval_map, CategoryTheory.Functor.pi'_eval, μ_def, equivalenceOfEquiv_functor, ε_def, comapEvalIsoEval_inv_app, comapEvalIsoEval_hom_app
evalCompEqToEquivalenceFunctor 📖CompOp
4 mathmath: equivalenceOfEquiv_unitIso, equivalenceOfEquiv_counitIso, evalCompEqToEquivalenceFunctor_hom, evalCompEqToEquivalenceFunctor_inv
instCategoryComp 📖CompOp
16 mathmath: CategoryTheory.FreeMonoidalCategory.inclusion_obj, CategoryTheory.FreeMonoidalCategory.normalizeIsoAux_inv_app, CategoryTheory.GradedObject.comapEquiv_counitIso, CategoryTheory.FreeMonoidalCategory.normalize_naturality, CategoryTheory.GradedObject.comapEquiv_unitIso, CategoryTheory.FreeMonoidalCategory.tensorFunc_map_app, CategoryTheory.FreeMonoidalCategory.inclusion_map, CategoryTheory.FreeMonoidalCategory.normalizeIsoApp_unitor, CategoryTheory.FreeMonoidalCategory.instSubsingletonHomCompDiscreteNormalMonoidalObject, CategoryTheory.FreeMonoidalCategory.normalizeIsoAux_hom_app, CategoryTheory.FreeMonoidalCategory.normalizeIsoApp_tensor, comapComp_hom_app, comapEvalIsoEval_inv_app, comapEvalIsoEval_hom_app, comapComp_inv_app, CategoryTheory.FreeMonoidalCategory.tensorFunc_obj_map
isoApp 📖CompOp
9 mathmath: isoApp_refl, isoApp_symm, isoApp_hom, isoApp_trans, isoApp_left_unitor, isoApp_inv, isoApp_associator, isoApp_braiding, isoApp_right_unitor
isoMk 📖CompOp
2 mathmath: isoMk_inv, isoMk_hom
optionEquivalence 📖CompOp
4 mathmath: optionEquivalence_unitIso, optionEquivalence_inverse, optionEquivalence_counitIso, optionEquivalence_functor
sum 📖CompOp
3 mathmath: sum_obj_obj, sum_obj_map, sum_map_app
sumElimCategory 📖CompOp
3 mathmath: sum_obj_obj, sum_obj_map, sum_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
comapComp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.pi
instCategoryComp
CategoryTheory.Functor.comp
comap
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
comapComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
comapComp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.pi
instCategoryComp
comap
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
comapComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
comapEvalIsoEval_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.pi
instCategoryComp
CategoryTheory.Functor.comp
comap
eval
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
comapEvalIsoEval
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
comapEvalIsoEval_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.pi
instCategoryComp
eval
CategoryTheory.Functor.comp
comap
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
comapEvalIsoEval
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
comapId_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.pi
comap
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
comapId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
comapId_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.pi
CategoryTheory.Functor.id
comap
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
comapId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
comap_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.pi
comap
comap_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.pi
comap
comp_apply 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.pi
eqToEquivalenceFunctorIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.functor
eqToEquivalence
eqToEquivalenceFunctorIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
eqToEquivalenceFunctorIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.functor
eqToEquivalence
eqToEquivalenceFunctorIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
equivalenceOfEquiv_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivalenceOfEquiv
CategoryTheory.NatIso.pi'
CategoryTheory.Functor.comp
CategoryTheory.Functor.pi'
eval
Equiv.symm
CategoryTheory.Equivalence.functor
eqToEquivalence
CategoryTheory.Functor.id
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.symm
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Functor.pi'CompEval
evalCompEqToEquivalenceFunctor
Equiv.apply_symm_apply
CategoryTheory.Functor.leftUnitor
equivalenceOfEquiv_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivalenceOfEquiv
CategoryTheory.Functor.pi'
CategoryTheory.Functor.comp
Equiv.symm
eval
eqToEquivalence
equivalenceOfEquiv_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivalenceOfEquiv
CategoryTheory.Functor.pi'
eval
equivalenceOfEquiv_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivalenceOfEquiv
CategoryTheory.NatIso.pi'
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.pi'
Equiv.symm
eval
CategoryTheory.Equivalence.functor
eqToEquivalence
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.leftUnitor
Equiv.symm_apply_apply
CategoryTheory.Iso.symm
evalCompEqToEquivalenceFunctor
CategoryTheory.Functor.isoWhiskerLeft
eqToEquivalenceFunctorIso
CategoryTheory.Functor.pi'CompEval
CategoryTheory.Functor.associator
evalCompEqToEquivalenceFunctor_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.pi
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
eval
CategoryTheory.Equivalence.functor
eqToEquivalence
evalCompEqToEquivalenceFunctor
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
evalCompEqToEquivalenceFunctor_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.pi
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
eval
CategoryTheory.Equivalence.functor
eqToEquivalence
evalCompEqToEquivalenceFunctor
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
eval_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.pi
eval
eval_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.pi
eval
ext 📖
ext_iff 📖ext
id_apply 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.pi
isoApp_hom 📖mathematicalCategoryTheory.Iso.hom
isoApp
CategoryTheory.pi
isoApp_inv 📖mathematicalCategoryTheory.Iso.inv
isoApp
CategoryTheory.pi
isoApp_refl 📖mathematicalisoApp
CategoryTheory.Iso.refl
CategoryTheory.pi
isoApp_symm 📖mathematicalisoApp
CategoryTheory.Iso.symm
CategoryTheory.pi
isoApp_trans 📖mathematicalisoApp
CategoryTheory.Iso.trans
CategoryTheory.pi
isoMk_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.pi
isoMk
isoMk_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.pi
isoMk
optionEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.pi
CategoryTheory.prod'
optionEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.pi'
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
eval
CategoryTheory.Functor.prod'
optionEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.pi
CategoryTheory.prod'
optionEquivalence
CategoryTheory.Functor.prod'
eval
CategoryTheory.Functor.pi'
optionEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.pi
CategoryTheory.prod'
optionEquivalence
CategoryTheory.Functor.pi'
CategoryTheory.Functor
CategoryTheory.Prod.fst
CategoryTheory.Functor.comp
CategoryTheory.Prod.snd
eval
optionEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.pi
CategoryTheory.prod'
optionEquivalence
CategoryTheory.NatIso.pi'
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.prod'
eval
CategoryTheory.Functor.pi'
CategoryTheory.Functor
CategoryTheory.Prod.fst
CategoryTheory.Prod.snd
CategoryTheory.Iso
CategoryTheory.Functor.category
CategoryTheory.Iso.refl
sum_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.pi
sumElimCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
sum
CategoryTheory.Functor.obj
sum_obj_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.pi
sumElimCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
sum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
sum_obj_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.pi
sumElimCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
sum

---

← Back to Index