Documentation Verification Report

AdditiveFunctor

πŸ“ Source: Mathlib/CategoryTheory/Preadditive/AdditiveFunctor.lean

Statistics

MetricCount
DefinitionsAdditiveFunctor, forget, of, ofExact, ofLeftExact, ofRightExact, mapAddHom, additiveFunctor, Β«term_β₯€+_Β»
9
Theoremsforget_map, forget_obj, forget_obj_of, ofExact_map, ofExact_map_hom, ofExact_obj_fst, ofLeftExact_map, ofLeftExact_map_hom, ofLeftExact_obj_fst, ofRightExact_map, ofRightExact_map_hom, ofRightExact_obj_fst, of_fst, of_obj, inverse_additive, map_add, additive_of_comp_faithful, additive_of_full_essSurj_comp, additive_of_iso, additive_of_preservesBinaryBiproducts, additive_of_preserves_binary_products, coe_mapAddHom, fullSubcategoryInclusion_additive, hasZeroObject_of_additive, inducedFunctor_additive, instAdditiveComp, instAdditiveFullSubcategoryLift, instAdditiveId, instAdditiveObjEvaluation, mapAddHom_apply, map_add, map_neg, map_nsmul, map_sub, map_sum, map_zsmul, preservesFiniteBiproductsOfAdditive, preservesFiniteCoproductsOfAdditive, preservesFiniteProductsOfAdditive, preservesZeroMorphisms_of_additive, additiveFunctor_iff, exactFunctor_le_additiveFunctor, instAdditiveAdditiveFunctorFunctorForget, instAdditiveObjFunctorAdditiveFunctor, instAdditiveObjFunctorAdditiveFunctor_1, leftExactFunctor_le_additiveFunctor, rightExactFunctor_le_additiveFunctor
47
Total56

CategoryTheory

Definitions

NameCategoryTheorems
AdditiveFunctor πŸ“–CompOp
13 mathmath: AdditiveFunctor.ofExact_obj_fst, AdditiveFunctor.ofLeftExact_map, AdditiveFunctor.ofRightExact_map, AdditiveFunctor.ofExact_map, AdditiveFunctor.forget_obj_of, AdditiveFunctor.forget_obj, AdditiveFunctor.ofLeftExact_obj_fst, AdditiveFunctor.forget_map, AdditiveFunctor.ofRightExact_obj_fst, instAdditiveAdditiveFunctorFunctorForget, AdditiveFunctor.ofExact_map_hom, AdditiveFunctor.ofLeftExact_map_hom, AdditiveFunctor.ofRightExact_map_hom
additiveFunctor πŸ“–CompOp
21 mathmath: instAdditiveObjFunctorAdditiveFunctor, instAdditiveObjFunctorAdditiveFunctor_1, exactFunctor_le_additiveFunctor, AdditiveFunctor.ofExact_obj_fst, AdditiveFunctor.ofLeftExact_map, AdditiveFunctor.ofRightExact_map, AdditiveFunctor.ofExact_map, AdditiveFunctor.forget_obj_of, AdditiveFunctor.forget_obj, leftExactFunctor_le_additiveFunctor, AdditiveFunctor.ofLeftExact_obj_fst, AdditiveFunctor.forget_map, AdditiveFunctor.ofRightExact_obj_fst, AdditiveFunctor.of_obj, AdditiveFunctor.of_fst, instAdditiveAdditiveFunctorFunctorForget, AdditiveFunctor.ofExact_map_hom, rightExactFunctor_le_additiveFunctor, AdditiveFunctor.ofLeftExact_map_hom, additiveFunctor_iff, AdditiveFunctor.ofRightExact_map_hom
Β«term_β₯€+_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
additiveFunctor_iff πŸ“–mathematicalβ€”additiveFunctor
Functor.Additive
β€”β€”
exactFunctor_le_additiveFunctor πŸ“–mathematicalβ€”ObjectProperty
Functor
Category.toCategoryStruct
Functor.category
Pi.hasLe
Prop.le
exactFunctor
additiveFunctor
β€”LE.le.trans
exactFunctor_le_leftExactFunctor
leftExactFunctor_le_additiveFunctor
instAdditiveAdditiveFunctorFunctorForget πŸ“–mathematicalβ€”Functor.Additive
AdditiveFunctor
Functor
ObjectProperty.FullSubcategory.category
Functor.category
additiveFunctor
Preadditive.fullSubcategory
functorCategoryPreadditive
AdditiveFunctor.forget
β€”β€”
instAdditiveObjFunctorAdditiveFunctor πŸ“–mathematicalβ€”Functor.Additive
ObjectProperty.FullSubcategory.obj
Functor
Functor.category
additiveFunctor
β€”ObjectProperty.FullSubcategory.property
instAdditiveObjFunctorAdditiveFunctor_1 πŸ“–mathematicalβ€”Functor.Additive
ObjectProperty.FullSubcategory.obj
Functor
Functor.category
additiveFunctor
β€”ObjectProperty.FullSubcategory.property
leftExactFunctor_le_additiveFunctor πŸ“–mathematicalβ€”ObjectProperty
Functor
Category.toCategoryStruct
Functor.category
Pi.hasLe
Prop.le
leftExactFunctor
additiveFunctor
β€”Functor.additive_of_preservesBinaryBiproducts
Functor.preservesZeroMorphisms_of_preserves_terminal_object
Limits.PreservesLimitsOfShape.preservesLimit
Limits.PreservesFiniteLimits.preservesFiniteLimits
Limits.preservesBinaryBiproducts_of_preservesBinaryProducts
rightExactFunctor_le_additiveFunctor πŸ“–mathematicalβ€”ObjectProperty
Functor
Category.toCategoryStruct
Functor.category
Pi.hasLe
Prop.le
rightExactFunctor
additiveFunctor
β€”Functor.additive_of_preservesBinaryBiproducts
Functor.preservesZeroMorphisms_of_preserves_initial_object
Limits.PreservesColimitsOfShape.preservesColimit
Limits.PreservesFiniteColimits.preservesFiniteColimits
Limits.preservesBinaryBiproducts_of_preservesBinaryCoproducts

CategoryTheory.AdditiveFunctor

Definitions

NameCategoryTheorems
forget πŸ“–CompOp
4 mathmath: forget_obj_of, forget_obj, forget_map, CategoryTheory.instAdditiveAdditiveFunctorFunctorForget
of πŸ“–CompOp
3 mathmath: forget_obj_of, of_obj, of_fst
ofExact πŸ“–CompOp
3 mathmath: ofExact_obj_fst, ofExact_map, ofExact_map_hom
ofLeftExact πŸ“–CompOp
3 mathmath: ofLeftExact_map, ofLeftExact_obj_fst, ofLeftExact_map_hom
ofRightExact πŸ“–CompOp
3 mathmath: ofRightExact_map, ofRightExact_obj_fst, ofRightExact_map_hom

Theorems

NameKindAssumesProvesValidatesDepends On
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.AdditiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
forget
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.AdditiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
forget
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj_of πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.AdditiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
forget
of
β€”β€”
ofExact_map πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.exactFunctor
CategoryTheory.AdditiveFunctor
ofExact
CategoryTheory.Functor.map
β€”ofExact_map_hom
ofExact_map_hom πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.exactFunctor
CategoryTheory.AdditiveFunctor
ofExact
CategoryTheory.Functor.map
β€”β€”
ofExact_obj_fst πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.exactFunctor
CategoryTheory.AdditiveFunctor
ofExact
β€”β€”
ofLeftExact_map πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.leftExactFunctor
CategoryTheory.AdditiveFunctor
ofLeftExact
CategoryTheory.Functor.map
β€”ofLeftExact_map_hom
ofLeftExact_map_hom πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.leftExactFunctor
CategoryTheory.AdditiveFunctor
ofLeftExact
CategoryTheory.Functor.map
β€”β€”
ofLeftExact_obj_fst πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.Functor.obj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.leftExactFunctor
CategoryTheory.AdditiveFunctor
ofLeftExact
β€”β€”
ofRightExact_map πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.rightExactFunctor
CategoryTheory.AdditiveFunctor
ofRightExact
CategoryTheory.Functor.map
β€”ofRightExact_map_hom
ofRightExact_map_hom πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.rightExactFunctor
CategoryTheory.AdditiveFunctor
ofRightExact
CategoryTheory.Functor.map
β€”β€”
ofRightExact_obj_fst πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
CategoryTheory.Functor.obj
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.rightExactFunctor
CategoryTheory.AdditiveFunctor
ofRightExact
β€”β€”
of_fst πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
of
β€”β€”
of_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.additiveFunctor
of
β€”β€”

CategoryTheory.Equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
inverse_additive πŸ“–mathematicalβ€”CategoryTheory.Functor.Additive
inverse
β€”CategoryTheory.Functor.map_injective
faithful_functor
fun_inv_map
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.comp_add
CategoryTheory.Functor.map_add

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapAddHom πŸ“–CompOp
4 mathmath: CategoryTheory.preadditiveYonedaMap_app, coe_mapAddHom, mapAddHom_apply, mapLinearMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
additive_of_comp_faithful πŸ“–mathematicalβ€”Additiveβ€”map_injective
comp_map
map_add
additive_of_full_essSurj_comp πŸ“–mathematicalβ€”Additiveβ€”map_surjective
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
map_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Preadditive.add_comp
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Preadditive.comp_add
map_add
additive_of_iso πŸ“–mathematicalβ€”Additiveβ€”CategoryTheory.NatIso.naturality_1
map_add
CategoryTheory.Preadditive.add_comp
CategoryTheory.NatTrans.naturality
CategoryTheory.Preadditive.comp_add
CategoryTheory.Iso.inv_hom_id_app_assoc
additive_of_preservesBinaryBiproducts πŸ“–mathematicalβ€”Additiveβ€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Limits.biprod.add_eq_lift_id_desc
map_comp
hasBinaryBiproduct_of_preserves
CategoryTheory.Limits.PreservesBinaryBiproducts.preserves
CategoryTheory.Limits.biprod.lift_mapBiprod
CategoryTheory.Limits.biprod.mapBiprod_hom_desc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
map_id
additive_of_preserves_binary_products πŸ“–mathematicalβ€”Additiveβ€”CategoryTheory.Limits.HasBinaryBiproducts.of_hasBinaryProducts
CategoryTheory.Limits.preservesBinaryBiproducts_of_preservesBinaryProducts
additive_of_preservesBinaryBiproducts
coe_mapAddHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
AddMonoidHom.instFunLike
mapAddHom
map
β€”β€”
fullSubcategoryInclusion_additive πŸ“–mathematicalβ€”Additive
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Preadditive.fullSubcategory
CategoryTheory.ObjectProperty.ΞΉ
β€”β€”
hasZeroObject_of_additive πŸ“–mathematicalβ€”CategoryTheory.Limits.HasZeroObjectβ€”CategoryTheory.Limits.IsZero.iff_id_eq_zero
map_id
CategoryTheory.Limits.id_zero
map_zero
preservesZeroMorphisms_of_additive
inducedFunctor_additive πŸ“–mathematicalβ€”Additive
CategoryTheory.InducedCategory
CategoryTheory.InducedCategory.instCategory
CategoryTheory.Preadditive.inducedCategory
CategoryTheory.inducedFunctor
β€”β€”
instAdditiveComp πŸ“–mathematicalβ€”Additive
comp
β€”map_add
instAdditiveFullSubcategoryLift πŸ“–mathematicalobjAdditive
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Preadditive.fullSubcategory
CategoryTheory.ObjectProperty.lift
β€”map_add
instAdditiveId πŸ“–mathematicalβ€”Additive
id
β€”β€”
instAdditiveObjEvaluation πŸ“–mathematicalβ€”Additive
CategoryTheory.Functor
category
CategoryTheory.functorCategoryPreadditive
obj
CategoryTheory.evaluation
β€”β€”
mapAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
AddMonoidHom.instFunLike
mapAddHom
map
β€”β€”
map_add πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
obj
β€”Additive.map_add
map_neg πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
obj
β€”AddMonoidHom.map_neg
map_nsmul πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
obj
β€”AddMonoidHom.map_nsmul
map_sub πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
obj
β€”AddMonoidHom.map_sub
map_sum πŸ“–mathematicalβ€”map
Finset.sum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
obj
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
map_zsmul πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
obj
β€”AddMonoidHom.map_zsmul
preservesFiniteBiproductsOfAdditive πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFiniteBiproducts
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
preservesZeroMorphisms_of_additive
β€”preservesZeroMorphisms_of_additive
nonempty_fintype
Finset.sum_congr
mapBicone_Ο€
mapBicone_ΞΉ
map_comp
map_sum
map_id
CategoryTheory.Limits.IsBilimit.total
preservesFiniteCoproductsOfAdditive πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFiniteCoproductsβ€”CategoryTheory.Limits.preservesCoproductsOfShape_of_preservesBiproductsOfShape
preservesZeroMorphisms_of_additive
Finite.of_fintype
CategoryTheory.Limits.PreservesFiniteBiproducts.preserves
preservesFiniteBiproductsOfAdditive
preservesFiniteProductsOfAdditive πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFiniteProductsβ€”CategoryTheory.Limits.preservesProductsOfShape_of_preservesBiproductsOfShape
preservesZeroMorphisms_of_additive
Finite.of_fintype
CategoryTheory.Limits.PreservesFiniteBiproducts.preserves
preservesFiniteBiproductsOfAdditive
preservesZeroMorphisms_of_additive πŸ“–mathematicalβ€”PreservesZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
β€”AddMonoidHom.map_zero

CategoryTheory.Functor.Additive

Theorems

NameKindAssumesProvesValidatesDepends On
map_add πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Functor.obj
β€”β€”

---

← Back to Index