Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Preadditive/Injective/Basic.lean

Statistics

MetricCount
DefinitionsinjectivePresentationOfMap, mapInjectivePresentation, injectivePresentationOfMapInjectivePresentation, d, factorThru, instSyzygies, syzygies, under, ι, InjectivePresentation, J, f, isInjective
13
Theoremsinjective_of_map_injective, map_injective, of_adjunction, of_equivalence, presentation, enoughInjectives_iff, map_injective_iff, injective_of_map_injective, enoughInjectives, comp_factorThru, comp_factorThru_assoc, enoughInjectives_of_enoughProjectives_op, enoughProjectives_of_enoughInjectives_op, exists_presentation, injective_iff_preservesEpimorphisms_yoneda_obj, injective_iff_projective_op, injective_of_adjoint, injective_under, instBiprod, instBiproduct, instEnoughInjectivesOppositeOfEnoughProjectives, instEnoughProjectivesOppositeOfEnoughInjectives, instOfNonempty, instOppositeOpOfProjective, instPiObj, instProd, instProjectiveOppositeOp, instProjectiveUnopOfOpposite, instUnopOfProjectiveOpposite, isZero_under, iso_iff, of_iso, projective_iff_injective_op, zero_injective, ι_mono, injective, mono, injective
38
Total51

CategoryTheory

Definitions

NameCategoryTheorems
InjectivePresentation 📖CompData
1 mathmath: EnoughInjectives.presentation
isInjective 📖CompOp

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
injectivePresentationOfMap 📖CompOp
mapInjectivePresentation 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
injective_of_map_injective 📖mathematicalCategoryTheory.InjectiveCategoryTheory.Injective.factors
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimitsOfSize0.preservesFiniteLimits
rightAdjoint_preservesLimits
instIsIsoAppCounitOfFullOfFaithful
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
inv_counit_map
unit_naturality_assoc
right_triangle_components
CategoryTheory.Category.comp_id
map_injective 📖mathematicalCategoryTheory.Injective
CategoryTheory.Functor.obj
CategoryTheory.Injective.factors
CategoryTheory.Functor.map_mono
unit_naturality_assoc
CategoryTheory.Functor.map_comp
right_triangle_components
CategoryTheory.Category.comp_id

CategoryTheory.EnoughInjectives

Theorems

NameKindAssumesProvesValidatesDepends On
of_adjunction 📖mathematicalCategoryTheory.EnoughInjectivespresentation
of_equivalence 📖mathematicalCategoryTheory.EnoughInjectivesof_adjunction
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.reflectsMonomorphisms_of_reflectsLimitsOfShape
CategoryTheory.Limits.ReflectsFiniteLimits.reflects
CategoryTheory.Limits.instReflectsFiniteLimitsOfReflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
presentation 📖mathematicalCategoryTheory.InjectivePresentation

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
injectivePresentationOfMapInjectivePresentation 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
enoughInjectives_iff 📖mathematicalCategoryTheory.EnoughInjectivesCategoryTheory.EnoughInjectives.of_adjunction
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
isEquivalence_functor
CategoryTheory.reflectsMonomorphisms_of_reflectsLimitsOfShape
CategoryTheory.Limits.ReflectsFiniteLimits.reflects
CategoryTheory.Limits.instReflectsFiniteLimitsOfReflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
full_functor
faithful_functor
map_injective_iff 📖mathematicalCategoryTheory.Injective
CategoryTheory.Functor.obj
functor
CategoryTheory.Adjunction.injective_of_map_injective
full_inverse
faithful_inverse
CategoryTheory.Adjunction.map_injective
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
isEquivalence_functor

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
injective_of_map_injective 📖mathematicalCategoryTheory.InjectiveCategoryTheory.Injective.factors
map_mono
map_injective
map_comp
map_preimage

CategoryTheory.Injective

Definitions

NameCategoryTheorems
d 📖CompOp
2 mathmath: CategoryTheory.InjectiveResolution.ofCocomplex_d_0_1, CategoryTheory.exact_f_d
factorThru 📖CompOp
2 mathmath: comp_factorThru_assoc, comp_factorThru
instSyzygies 📖CompOp
syzygies 📖CompOp
1 mathmath: CategoryTheory.exact_f_d
under 📖CompOp
6 mathmath: ι_mono, injective_under, isZero_under, CategoryTheory.InjectiveResolution.ofCocomplex_d_0_1, CochainComplex.cm5b.I_d, CochainComplex.cm5b.I_X
ι 📖CompOp
5 mathmath: ι_mono, CategoryTheory.InjectiveResolution.of_def, CategoryTheory.InjectiveResolution.ofCocomplex_d_0_1, CochainComplex.cm5b.i_f_comp, CochainComplex.cm5b.i_f_comp_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
comp_factorThru 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
factorThru
factors
comp_factorThru_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
factorThru
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_factorThru
enoughInjectives_of_enoughProjectives_op 📖mathematicalCategoryTheory.EnoughInjectivesinstUnopOfProjectiveOpposite
CategoryTheory.Projective.projective_over
CategoryTheory.unop_mono_of_epi
CategoryTheory.Projective.π_epi
enoughProjectives_of_enoughInjectives_op 📖mathematicalCategoryTheory.EnoughProjectivesinstProjectiveUnopOfOpposite
injective_under
CategoryTheory.unop_epi_of_mono
ι_mono
exists_presentation 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.InjectivePresentation.J
CategoryTheory.Limits.IsZero.injective
CategoryTheory.instMonoId
CategoryTheory.EnoughInjectives.presentation
injective_iff_preservesEpimorphisms_yoneda_obj 📖mathematicalCategoryTheory.Injective
CategoryTheory.Functor.PreservesEpimorphisms
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
injective_iff_projective_op
CategoryTheory.Projective.projective_iff_preservesEpimorphisms_coyoneda_obj
CategoryTheory.Functor.preservesEpimorphisms.iso_iff
injective_iff_projective_op 📖mathematicalCategoryTheory.Injective
CategoryTheory.Projective
Opposite
CategoryTheory.Category.opposite
Opposite.op
instProjectiveOppositeOp
instUnopOfProjectiveOpposite
injective_of_adjoint 📖mathematicalCategoryTheory.Injective
CategoryTheory.Functor.obj
CategoryTheory.Functor.map_mono
Equiv.injective
factorThru.congr_simp
CategoryTheory.Adjunction.homEquiv_counit
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Adjunction.left_triangle_components_assoc
comp_factorThru
injective_under 📖mathematicalCategoryTheory.Injective
under
CategoryTheory.InjectivePresentation.injective
exists_presentation
instBiprod 📖mathematicalCategoryTheory.Injective
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.biprod.lift_fst
comp_factorThru
CategoryTheory.Limits.biprod.lift_snd
instBiproduct 📖mathematicalCategoryTheory.InjectiveCategoryTheory.Limits.biproductCategoryTheory.Limits.biproduct.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.biproduct.lift_π
comp_factorThru
instEnoughInjectivesOppositeOfEnoughProjectives 📖mathematicalCategoryTheory.EnoughInjectives
Opposite
CategoryTheory.Category.opposite
instOppositeOpOfProjective
CategoryTheory.Projective.projective_over
CategoryTheory.op_mono_of_epi
CategoryTheory.Projective.π_epi
instEnoughProjectivesOppositeOfEnoughInjectives 📖mathematicalCategoryTheory.EnoughProjectives
Opposite
CategoryTheory.Category.opposite
instProjectiveOppositeOp
injective_under
CategoryTheory.op_epi_of_mono
ι_mono
instOfNonempty 📖mathematicalCategoryTheory.Injective
CategoryTheory.types
CategoryTheory.types_ext
CategoryTheory.mono_iff_injective
instOppositeOpOfProjective 📖mathematicalCategoryTheory.Injective
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.unop_epi_of_mono
CategoryTheory.Projective.factorThru_comp
instPiObj 📖mathematicalCategoryTheory.InjectiveCategoryTheory.Limits.piObjCategoryTheory.Limits.Pi.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
comp_factorThru
instProd 📖mathematicalCategoryTheory.Injective
CategoryTheory.Limits.prod
CategoryTheory.Limits.prod.comp_lift
comp_factorThru
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Limits.prod.lift_fst
CategoryTheory.Limits.prod.lift_snd
instProjectiveOppositeOp 📖mathematicalCategoryTheory.Projective
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.unop_mono_of_epi
comp_factorThru
instProjectiveUnopOfOpposite 📖mathematicalCategoryTheory.ProjectiveCategoryTheory.op_mono_of_epi
comp_factorThru
instUnopOfProjectiveOpposite 📖mathematicalCategoryTheory.InjectiveCategoryTheory.op_epi_of_mono
CategoryTheory.Projective.factorThru_comp
isZero_under 📖mathematicalCategoryTheory.Limits.IsZerounderexists_presentation
iso_iff 📖mathematicalCategoryTheory.Injectiveof_iso
of_iso 📖mathematicalCategoryTheory.Injectivefactors
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
projective_iff_injective_op 📖mathematicalCategoryTheory.Projective
CategoryTheory.Injective
Opposite
CategoryTheory.Category.opposite
Opposite.op
instOppositeOpOfProjective
instProjectiveUnopOfOpposite
zero_injective 📖mathematicalCategoryTheory.Injective
CategoryTheory.Limits.HasZeroObject.zero'
CategoryTheory.Limits.IsZero.injective
CategoryTheory.Limits.isZero_zero
ι_mono 📖mathematicalCategoryTheory.Mono
under
ι
CategoryTheory.InjectivePresentation.mono
exists_presentation

CategoryTheory.Injective.Type

Theorems

NameKindAssumesProvesValidatesDepends On
enoughInjectives 📖mathematicalCategoryTheory.EnoughInjectives
CategoryTheory.types
CategoryTheory.Injective.instOfNonempty
CategoryTheory.mono_iff_injective
WithBot.coe_injective

CategoryTheory.InjectivePresentation

Definitions

NameCategoryTheorems
J 📖CompOp
3 mathmath: injective, mono, CategoryTheory.Injective.exists_presentation
f 📖CompOp
1 mathmath: mono

Theorems

NameKindAssumesProvesValidatesDepends On
injective 📖mathematicalCategoryTheory.Injective
J
mono 📖mathematicalCategoryTheory.Mono
J
f

CategoryTheory.Limits.IsZero

Theorems

NameKindAssumesProvesValidatesDepends On
injective 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Injectiveeq_of_tgt

---

← Back to Index