Documentation Verification Report

Resolution

📁 Source: Mathlib/CategoryTheory/Preadditive/Injective/Resolution.lean

Statistics

MetricCount
DefinitionsHasInjectiveResolution, HasInjectiveResolutions, InjectiveResolution, hom, cocomplex, isLimitKernelFork, kernelFork, self, ι
9
Theoremsout, out, ι_comp_hom, ι_comp_hom_assoc, ι_f_zero_comp_hom_f_zero, ι_f_zero_comp_hom_f_zero_assoc, cocomplex_exactAt_succ, complex_d_comp, exact_succ, hasHomology, injective, instMonoFNatι, quasiIso, self_cocomplex, self_ι, ι_f_succ, ι_f_zero_comp_complex_d, ι_f_zero_comp_complex_d_assoc
18
Total27

CategoryTheory

Definitions

NameCategoryTheorems
HasInjectiveResolution 📖CompData
2 mathmath: InjectiveResolution.instHasInjectiveResolution, HasInjectiveResolutions.out
HasInjectiveResolutions 📖CompData
1 mathmath: InjectiveResolution.instHasInjectiveResolutions
InjectiveResolution 📖CompData
1 mathmath: HasInjectiveResolution.out

CategoryTheory.HasInjectiveResolution

Theorems

NameKindAssumesProvesValidatesDepends On
out 📖mathematicalCategoryTheory.InjectiveResolution

CategoryTheory.HasInjectiveResolutions

Theorems

NameKindAssumesProvesValidatesDepends On
out 📖mathematicalCategoryTheory.HasInjectiveResolution

CategoryTheory.InjectiveResolution

Definitions

NameCategoryTheorems
cocomplex 📖CompOp
39 mathmath: injective, Hom.hom'_f, homotopyEquiv_inv_ι, ι'_f_zero, toRightDerivedZero'_comp_iCycles, complex_d_comp, desc_commutes_zero_assoc, CategoryTheory.instIsIsoToRightDerivedZero', toRightDerivedZero_eq, Hom.ι_comp_hom_assoc, ι_f_succ, ι_f_zero_comp_complex_d_assoc, instIsIsoToRightDerivedZero'Self, extMk_zero, ι_f_zero_comp_complex_d, self_cocomplex, desc_commutes, desc_commutes_assoc, Hom.ι_f_zero_comp_hom_f_zero, ι'_f_zero_assoc, cocomplex_exactAt_succ, Hom.hom'_f_assoc, cochainComplex_d_assoc, desc_commutes_zero, hasHomology, Hom.ι_f_zero_comp_hom_f_zero_assoc, exact_succ, instMonoFNatι, toRightDerivedZero'_comp_iCycles_assoc, homotopyEquiv_hom_ι_assoc, homotopyEquiv_hom_ι, exact₀, homotopyEquiv_inv_ι_assoc, rightDerivedToHomotopyCategory_app_eq, quasiIso, Hom.ι_comp_hom, descFOne_zero_comm, rightDerived_app_eq, cochainComplex_d
isLimitKernelFork 📖CompOp
kernelFork 📖CompOp
self 📖CompOp
3 mathmath: self_ι, instIsIsoToRightDerivedZero'Self, self_cocomplex
ι 📖CompOp
23 mathmath: homotopyEquiv_inv_ι, ι'_f_zero, self_ι, toRightDerivedZero'_comp_iCycles, desc_commutes_zero_assoc, Hom.ι_comp_hom_assoc, ι_f_succ, ι_f_zero_comp_complex_d_assoc, ι_f_zero_comp_complex_d, desc_commutes, desc_commutes_assoc, Hom.ι_f_zero_comp_hom_f_zero, ι'_f_zero_assoc, desc_commutes_zero, Hom.ι_f_zero_comp_hom_f_zero_assoc, instMonoFNatι, toRightDerivedZero'_comp_iCycles_assoc, homotopyEquiv_hom_ι_assoc, homotopyEquiv_hom_ι, exact₀, homotopyEquiv_inv_ι_assoc, quasiIso, Hom.ι_comp_hom

Theorems

NameKindAssumesProvesValidatesDepends On
cocomplex_exactAt_succ 📖mathematicalHomologicalComplex.ExactAt
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instHasHomologyObjSingle
hasHomology
quasiIsoAt_iff_exactAt
CochainComplex.exactAt_succ_single_obj
QuasiIso.quasiIsoAt
quasiIso
complex_d_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
exact_succ 📖mathematicalCategoryTheory.ShortComplex.Exact
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
HomologicalComplex.d
HomologicalComplex.d_comp_d
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.exactAt_iff'
CochainComplex.prev_nat_succ
CochainComplex.next
cocomplex_exactAt_succ
hasHomology 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
injective 📖mathematicalCategoryTheory.Injective
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
instMonoFNatι 📖mathematicalCategoryTheory.Mono
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
cocomplex
HomologicalComplex.Hom.f
ι
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.mono_of_isLimit_fork
ι_f_succ
CategoryTheory.Limits.HasZeroObject.instMono
quasiIso 📖mathematicalQuasiIso
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
cocomplex
ι
HomologicalComplex.instHasHomologyObjSingle
hasHomology
self_cocomplex 📖mathematicalcocomplex
self
CategoryTheory.Functor.obj
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CochainComplex.single₀
AddRightCancelSemigroup.toIsRightCancelAdd
self_ι 📖mathematicalι
self
CategoryTheory.CategoryStruct.id
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.obj
CochainComplex.single₀
ι_f_succ 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
cocomplex
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.IsZero.eq_of_src
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.isZero_single_obj_X
ι_f_zero_comp_complex_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
cocomplex
HomologicalComplex.Hom.f
ι
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.Hom.comm
ι_f_succ
CategoryTheory.Limits.comp_zero
ι_f_zero_comp_complex_d_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
cocomplex
HomologicalComplex.Hom.f
ι
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_f_zero_comp_complex_d

CategoryTheory.InjectiveResolution.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
7 mathmath: hom'_f, CategoryTheory.InjectiveResolution.extMk_comp_mk₀, ι_comp_hom_assoc, ι_f_zero_comp_hom_f_zero, hom'_f_assoc, ι_f_zero_comp_hom_f_zero_assoc, ι_comp_hom

Theorems

NameKindAssumesProvesValidatesDepends On
ι_comp_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.InjectiveResolution.cocomplex
CategoryTheory.InjectiveResolution.ι
hom
CategoryTheory.Functor.map
HomologicalComplex.from_single_hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
ι_f_zero_comp_hom_f_zero
CochainComplex.single₀_map_f_zero
ι_comp_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.InjectiveResolution.cocomplex
CategoryTheory.InjectiveResolution.ι
hom
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_comp_hom
ι_f_zero_comp_hom_f_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.InjectiveResolution.cocomplex
HomologicalComplex.Hom.f
CategoryTheory.InjectiveResolution.ι
hom
CategoryTheory.Functor.map
ι_f_zero_comp_hom_f_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.InjectiveResolution.cocomplex
HomologicalComplex.Hom.f
CategoryTheory.InjectiveResolution.ι
hom
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_f_zero_comp_hom_f_zero

---

← Back to Index