Documentation Verification Report

LiftToFinset

📁 Source: Mathlib/CategoryTheory/Preadditive/LiftToFinset.lean

Statistics

MetricCount
Definitions0
TheoremsfiniteSubcoproductsCocone_ι_app_eq_sum, finiteSubproductsCocone_π_app_eq_sum
2
Total2

CategoryTheory.Limits.CoproductsFromFiniteFiltered

Theorems

NameKindAssumesProvesValidatesDepends On
finiteSubcoproductsCocone_ι_app_eq_sum 📖mathematicalCategoryTheory.NatTrans.app
Finset
CategoryTheory.Discrete
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
liftToFinsetObj
CategoryTheory.Discrete.functor
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
finiteSubcoproductsCocone
CategoryTheory.Limits.Cocone.ι
Finset.sum
Finset.instMembership
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
CategoryTheory.Discrete.as
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.attach
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Sigma.π
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instDecidableEqDiscrete
CategoryTheory.Limits.Sigma.ι
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Preadditive.comp_sum
Finset.sum_eq_single
CategoryTheory.Limits.Sigma.ι_π_of_ne_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.Sigma.ι_π_eq_id_assoc
instIsEmptyFalse

CategoryTheory.Limits.ProductsFromFiniteCofiltered

Theorems

NameKindAssumesProvesValidatesDepends On
finiteSubproductsCocone_π_app_eq_sum 📖mathematicalCategoryTheory.NatTrans.app
Opposite
Finset
CategoryTheory.Discrete
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
liftToFinsetObj
CategoryTheory.Discrete.functor
finiteSubproductsCone
CategoryTheory.Limits.Cone.π
Finset.sum
Finset.instMembership
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
CategoryTheory.Discrete.as
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
Finset.Subtype.fintype
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.attach
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.Pi.π
CategoryTheory.Limits.Pi.ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instDecidableEqDiscrete
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.Pi.hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Preadditive.sum_comp
Finset.sum_congr
CategoryTheory.Category.assoc
Finset.sum_eq_single
CategoryTheory.Limits.Pi.ι_π_of_ne
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.Pi.ι_π_eq_id
CategoryTheory.Category.comp_id
instIsEmptyFalse

---

← Back to Index