| Name | Category | Theorems |
X 📖 | CompOp | 23 mathmath: additiveObjIsoBiproduct_hom_π, CategoryTheory.Functor.mapMat__obj_X, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', embedding_obj_X, id_apply_self, lift_obj, instHasBiproductιObjEmbeddingXOfAdditive, isoBiproductEmbedding_hom, add_apply, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, lift_map, isoBiproductEmbedding_inv, comp_apply, CategoryTheory.Functor.mapMat__map, id_apply, id_def, id_apply_of_ne, comp_def, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
|
additiveObjIsoBiproduct 📖 | CompOp | 8 mathmath: additiveObjIsoBiproduct_hom_π, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
|
embedding 📖 | CompOp | 21 mathmath: additiveObjIsoBiproduct_hom_π, embedding_obj_ι, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', embedding_obj_X, instHasBiproductιObjEmbeddingXOfAdditive, embeddingLiftIso_hom_app, isoBiproductEmbedding_hom, Embedding.instAdditiveEmbedding, embeddingLiftIso_inv_app, Embedding.instFaithfulEmbedding, embedding_obj_fintype, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, equivalenceSelfOfHasFiniteBiproducts_inverse, isoBiproductEmbedding_inv, Embedding.instFullEmbedding, embedding_map, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
|
embeddingLiftIso 📖 | CompOp | 2 mathmath: embeddingLiftIso_hom_app, embeddingLiftIso_inv_app
|
equivalenceSelfOfHasFiniteBiproducts 📖 | CompOp | 2 mathmath: equivalenceSelfOfHasFiniteBiproducts_functor, equivalenceSelfOfHasFiniteBiproducts_inverse
|
equivalenceSelfOfHasFiniteBiproductsAux 📖 | CompOp | — |
ext 📖 | CompOp | — |
fintype 📖 | CompOp | 15 mathmath: additiveObjIsoBiproduct_hom_π, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', isoBiproductEmbedding_hom, embedding_obj_fintype, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, CategoryTheory.Functor.mapMat__obj_fintype, isoBiproductEmbedding_inv, comp_apply, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_str, comp_def, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
|
instAddCommGroupHom 📖 | CompOp | 1 mathmath: add_apply
|
instCategory 📖 | CompOp | 48 mathmath: additiveObjIsoBiproduct_hom_π, CategoryTheory.Functor.mapMat__obj_X, CategoryTheory.Functor.mapMat__obj_ι, embedding_obj_ι, CategoryTheory.Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, additiveObjIsoBiproduct_naturality, CategoryTheory.Functor.mapMatComp_hom_app, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', embedding_obj_X, id_apply_self, lift_obj, CategoryTheory.Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instHasBiproductιObjEmbeddingXOfAdditive, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_carrier, embeddingLiftIso_hom_app, isoBiproductEmbedding_hom, Embedding.instAdditiveEmbedding, embeddingLiftIso_inv_app, add_apply, equivalenceSelfOfHasFiniteBiproducts_functor, Embedding.instFaithfulEmbedding, embedding_obj_fintype, lift_additive, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, CategoryTheory.Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, lift_map, equivalenceSelfOfHasFiniteBiproducts_inverse, CategoryTheory.Functor.mapMat__obj_fintype, isoBiproductEmbedding_inv, comp_apply, hasFiniteBiproducts, CategoryTheory.Functor.mapMat__map, CategoryTheory.Functor.mapMatId_hom_app, CategoryTheory.Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, id_apply, CategoryTheory.Mat.equivalenceSingleObjInverse_map, id_def, Embedding.instFullEmbedding, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_str, id_apply_of_ne, CategoryTheory.Functor.mapMatId_inv_app, embedding_map, comp_def, CategoryTheory.Functor.mapMatComp_inv_app, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
|
instInhabited 📖 | CompOp | — |
instInhabitedHom 📖 | CompOp | — |
instPreadditive 📖 | CompOp | 9 mathmath: additiveObjIsoBiproduct_hom_π, ι_additiveObjIsoBiproduct_inv_assoc, isoBiproductEmbedding_hom, Embedding.instAdditiveEmbedding, lift_additive, ι_additiveObjIsoBiproduct_inv, isoBiproductEmbedding_inv, hasFiniteBiproducts, additiveObjIsoBiproduct_hom_π_assoc
|
isoBiproductEmbedding 📖 | CompOp | 6 mathmath: additiveObjIsoBiproduct_hom_π, ι_additiveObjIsoBiproduct_inv_assoc, isoBiproductEmbedding_hom, ι_additiveObjIsoBiproduct_inv, isoBiproductEmbedding_inv, additiveObjIsoBiproduct_hom_π_assoc
|
liftUnique 📖 | CompOp | — |
ι 📖 | CompOp | 20 mathmath: additiveObjIsoBiproduct_hom_π, CategoryTheory.Functor.mapMat__obj_ι, embedding_obj_ι, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', lift_obj, instHasBiproductιObjEmbeddingXOfAdditive, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_carrier, isoBiproductEmbedding_hom, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, lift_map, isoBiproductEmbedding_inv, comp_apply, id_apply, id_def, comp_def, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
|