Documentation Verification Report

Mat

📁 Source: Mathlib/CategoryTheory/Preadditive/Mat.lean

Statistics

MetricCount
DefinitionsmapMatComp, mapMatId, mapMat_, Mat, equivalenceSingleObj, equivalenceSingleObjInverse, instAddCommGroupHom, instInhabitedHom, instPreadditive, Mat_, comp, id, X, additiveObjIsoBiproduct, embedding, embeddingLiftIso, equivalenceSelfOfHasFiniteBiproducts, equivalenceSelfOfHasFiniteBiproductsAux, ext, fintype, instAddCommGroupHom, instCategory, instInhabited, instInhabitedHom, instPreadditive, isoBiproductEmbedding, liftUnique, ι, instCategoryMatOfSemiring, instCoeSortMatType, instInhabitedMat
31
TheoremsmapMatComp_hom_app, mapMatComp_inv_app, mapMatId_hom_app, mapMatId_inv_app, mapMat__map, mapMat__obj_X, mapMat__obj_fintype, mapMat__obj_ι, add_apply, comp_apply, comp_def, equivalenceSingleObjInverse_map, equivalenceSingleObjInverse_obj_carrier, equivalenceSingleObjInverse_obj_str, hom_ext, hom_ext_iff, id_apply, id_apply_of_ne, id_apply_self, id_def, instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instAdditiveEmbedding, instFaithfulEmbedding, instFullEmbedding, add_apply, additiveObjIsoBiproduct_hom_π, additiveObjIsoBiproduct_hom_π_assoc, additiveObjIsoBiproduct_naturality, additiveObjIsoBiproduct_naturality', additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_naturality_assoc, comp_apply, comp_def, embeddingLiftIso_hom_app, embeddingLiftIso_inv_app, embedding_map, embedding_obj_X, embedding_obj_fintype, embedding_obj_ι, equivalenceSelfOfHasFiniteBiproducts_functor, equivalenceSelfOfHasFiniteBiproducts_inverse, hasFiniteBiproducts, hom_ext, hom_ext_iff, id_apply, id_apply_of_ne, id_apply_self, id_def, instHasBiproductιObjEmbeddingXOfAdditive, isoBiproductEmbedding_hom, isoBiproductEmbedding_inv, lift_additive, lift_map, lift_obj, ι_additiveObjIsoBiproduct_inv, ι_additiveObjIsoBiproduct_inv_assoc
59
Total90

CategoryTheory

Definitions

NameCategoryTheorems
Mat 📖CompOp
14 mathmath: Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.equivalenceSingleObjInverse_obj_carrier, Mat.comp_apply, Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.id_apply_of_ne, Mat.add_apply, Mat.comp_def, Mat.id_apply, Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.id_apply_self, Mat.equivalenceSingleObjInverse_map, Mat.equivalenceSingleObjInverse_obj_str, Mat.id_def
Mat_ 📖CompData
48 mathmath: Mat_.additiveObjIsoBiproduct_hom_π, Functor.mapMat__obj_X, Functor.mapMat__obj_ι, Mat_.embedding_obj_ι, Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat_.additiveObjIsoBiproduct_naturality, Functor.mapMatComp_hom_app, Mat_.ι_additiveObjIsoBiproduct_inv_assoc, Mat_.additiveObjIsoBiproduct_naturality', Mat_.embedding_obj_X, Mat_.id_apply_self, Mat_.lift_obj, Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat_.instHasBiproductιObjEmbeddingXOfAdditive, Mat.equivalenceSingleObjInverse_obj_carrier, Mat_.embeddingLiftIso_hom_app, Mat_.isoBiproductEmbedding_hom, Mat_.Embedding.instAdditiveEmbedding, Mat_.embeddingLiftIso_inv_app, Mat_.add_apply, Mat_.equivalenceSelfOfHasFiniteBiproducts_functor, Mat_.Embedding.instFaithfulEmbedding, Mat_.embedding_obj_fintype, Mat_.lift_additive, Mat_.ι_additiveObjIsoBiproduct_inv, Mat_.additiveObjIsoBiproduct_naturality_assoc, Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat_.lift_map, Mat_.equivalenceSelfOfHasFiniteBiproducts_inverse, Functor.mapMat__obj_fintype, Mat_.isoBiproductEmbedding_inv, Mat_.comp_apply, Mat_.hasFiniteBiproducts, Functor.mapMat__map, Functor.mapMatId_hom_app, Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat_.id_apply, Mat.equivalenceSingleObjInverse_map, Mat_.id_def, Mat_.Embedding.instFullEmbedding, Mat.equivalenceSingleObjInverse_obj_str, Mat_.id_apply_of_ne, Functor.mapMatId_inv_app, Mat_.embedding_map, Mat_.comp_def, Functor.mapMatComp_inv_app, Mat_.additiveObjIsoBiproduct_naturality'_assoc, Mat_.additiveObjIsoBiproduct_hom_π_assoc
instCategoryMatOfSemiring 📖CompOp
14 mathmath: Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.equivalenceSingleObjInverse_obj_carrier, Mat.comp_apply, Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.id_apply_of_ne, Mat.add_apply, Mat.comp_def, Mat.id_apply, Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.id_apply_self, Mat.equivalenceSingleObjInverse_map, Mat.equivalenceSingleObjInverse_obj_str, Mat.id_def
instCoeSortMatType 📖CompOp
instInhabitedMat 📖CompOp

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapMatComp 📖CompOp
2 mathmath: mapMatComp_hom_app, mapMatComp_inv_app
mapMatId 📖CompOp
2 mathmath: mapMatId_hom_app, mapMatId_inv_app
mapMat_ 📖CompOp
8 mathmath: mapMat__obj_X, mapMat__obj_ι, mapMatComp_hom_app, mapMat__obj_fintype, mapMat__map, mapMatId_hom_app, mapMatId_inv_app, mapMatComp_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
mapMatComp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
mapMat_
comp
instAdditiveComp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapMatComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
instAdditiveComp
mapMatComp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
comp
mapMat_
instAdditiveComp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapMatComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
instAdditiveComp
mapMatId_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
mapMat_
id
instAdditiveId
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapMatId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
instAdditiveId
mapMatId_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
id
mapMat_
instAdditiveId
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapMatId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
instAdditiveId
mapMat__map 📖mathematicalmap
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
mapMat_
CategoryTheory.Mat_.X
mapMat__obj_X 📖mathematicalCategoryTheory.Mat_.X
obj
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
mapMat_
mapMat__obj_fintype 📖mathematicalCategoryTheory.Mat_.fintype
obj
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
mapMat_
mapMat__obj_ι 📖mathematicalCategoryTheory.Mat_.ι
obj
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
mapMat_

CategoryTheory.Mat

Definitions

NameCategoryTheorems
equivalenceSingleObj 📖CompOp
equivalenceSingleObjInverse 📖CompOp
7 mathmath: instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, equivalenceSingleObjInverse_obj_carrier, instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, equivalenceSingleObjInverse_map, equivalenceSingleObjInverse_obj_str
instAddCommGroupHom 📖CompOp
1 mathmath: add_apply
instInhabitedHom 📖CompOp
instPreadditive 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply 📖mathematicalQuiver.Hom
CategoryTheory.Mat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMatOfSemiring
Ring.toSemiring
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroupHom
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
comp_apply 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Mat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMatOfSemiring
Finset.sum
FintypeCat.carrier
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.univ
FintypeCat.instFintypeCarrier
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
comp_def 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Mat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMatOfSemiring
Finset.sum
FintypeCat.carrier
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.univ
FintypeCat.instFintypeCarrier
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
equivalenceSingleObjInverse_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Mat_
CategoryTheory.SingleObj
MulOpposite
CategoryTheory.Mat_.instCategory
CategoryTheory.SingleObj.category
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CategoryTheory.instPreadditiveSingleObj
MulOpposite.instRing
CategoryTheory.Mat
CategoryTheory.instCategoryMatOfSemiring
equivalenceSingleObjInverse
MulOpposite.unop
equivalenceSingleObjInverse_obj_carrier 📖mathematicalFintypeCat.carrier
CategoryTheory.Functor.obj
CategoryTheory.Mat_
CategoryTheory.SingleObj
MulOpposite
CategoryTheory.Mat_.instCategory
CategoryTheory.SingleObj.category
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CategoryTheory.instPreadditiveSingleObj
MulOpposite.instRing
CategoryTheory.Mat
CategoryTheory.instCategoryMatOfSemiring
equivalenceSingleObjInverse
CategoryTheory.Mat_.ι
equivalenceSingleObjInverse_obj_str 📖mathematicalFintypeCat.str
CategoryTheory.Functor.obj
CategoryTheory.Mat_
CategoryTheory.SingleObj
MulOpposite
CategoryTheory.Mat_.instCategory
CategoryTheory.SingleObj.category
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CategoryTheory.instPreadditiveSingleObj
MulOpposite.instRing
CategoryTheory.Mat
CategoryTheory.instCategoryMatOfSemiring
equivalenceSingleObjInverse
CategoryTheory.Mat_.fintype
hom_ext 📖Matrix.ext_iff
hom_ext_iff 📖hom_ext
id_apply 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMatOfSemiring
FintypeCat.carrier
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
id_apply_of_ne 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMatOfSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
id_apply_self 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMatOfSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
id_def 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMatOfSemiring
FintypeCat.carrier
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Mat_
CategoryTheory.SingleObj
MulOpposite
CategoryTheory.Mat
CategoryTheory.Mat_.instCategory
CategoryTheory.SingleObj.category
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CategoryTheory.instPreadditiveSingleObj
MulOpposite.instRing
CategoryTheory.instCategoryMatOfSemiring
equivalenceSingleObjInverse
instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Mat_
CategoryTheory.SingleObj
MulOpposite
CategoryTheory.Mat_.instCategory
CategoryTheory.SingleObj.category
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CategoryTheory.instPreadditiveSingleObj
MulOpposite.instRing
CategoryTheory.Mat
CategoryTheory.instCategoryMatOfSemiring
equivalenceSingleObjInverse
CategoryTheory.Mat_.hom_ext
MulOpposite.unop_injective
instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Mat_
CategoryTheory.SingleObj
MulOpposite
CategoryTheory.Mat_.instCategory
CategoryTheory.SingleObj.category
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CategoryTheory.instPreadditiveSingleObj
MulOpposite.instRing
CategoryTheory.Mat
CategoryTheory.instCategoryMatOfSemiring
equivalenceSingleObjInverse
instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Mat_
CategoryTheory.SingleObj
MulOpposite
CategoryTheory.Mat_.instCategory
CategoryTheory.SingleObj.category
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
CategoryTheory.instPreadditiveSingleObj
MulOpposite.instRing
CategoryTheory.Mat
CategoryTheory.instCategoryMatOfSemiring
equivalenceSingleObjInverse
instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse
instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse
instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse

CategoryTheory.Mat_

Definitions

NameCategoryTheorems
X 📖CompOp
23 mathmath: additiveObjIsoBiproduct_hom_π, CategoryTheory.Functor.mapMat__obj_X, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', embedding_obj_X, id_apply_self, lift_obj, instHasBiproductιObjEmbeddingXOfAdditive, isoBiproductEmbedding_hom, add_apply, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, lift_map, isoBiproductEmbedding_inv, comp_apply, CategoryTheory.Functor.mapMat__map, id_apply, id_def, id_apply_of_ne, comp_def, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
additiveObjIsoBiproduct 📖CompOp
8 mathmath: additiveObjIsoBiproduct_hom_π, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
embedding 📖CompOp
21 mathmath: additiveObjIsoBiproduct_hom_π, embedding_obj_ι, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', embedding_obj_X, instHasBiproductιObjEmbeddingXOfAdditive, embeddingLiftIso_hom_app, isoBiproductEmbedding_hom, Embedding.instAdditiveEmbedding, embeddingLiftIso_inv_app, Embedding.instFaithfulEmbedding, embedding_obj_fintype, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, equivalenceSelfOfHasFiniteBiproducts_inverse, isoBiproductEmbedding_inv, Embedding.instFullEmbedding, embedding_map, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
embeddingLiftIso 📖CompOp
2 mathmath: embeddingLiftIso_hom_app, embeddingLiftIso_inv_app
equivalenceSelfOfHasFiniteBiproducts 📖CompOp
2 mathmath: equivalenceSelfOfHasFiniteBiproducts_functor, equivalenceSelfOfHasFiniteBiproducts_inverse
equivalenceSelfOfHasFiniteBiproductsAux 📖CompOp
ext 📖CompOp
fintype 📖CompOp
15 mathmath: additiveObjIsoBiproduct_hom_π, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', isoBiproductEmbedding_hom, embedding_obj_fintype, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, CategoryTheory.Functor.mapMat__obj_fintype, isoBiproductEmbedding_inv, comp_apply, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_str, comp_def, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
instAddCommGroupHom 📖CompOp
1 mathmath: add_apply
instCategory 📖CompOp
48 mathmath: additiveObjIsoBiproduct_hom_π, CategoryTheory.Functor.mapMat__obj_X, CategoryTheory.Functor.mapMat__obj_ι, embedding_obj_ι, CategoryTheory.Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, additiveObjIsoBiproduct_naturality, CategoryTheory.Functor.mapMatComp_hom_app, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', embedding_obj_X, id_apply_self, lift_obj, CategoryTheory.Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, instHasBiproductιObjEmbeddingXOfAdditive, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_carrier, embeddingLiftIso_hom_app, isoBiproductEmbedding_hom, Embedding.instAdditiveEmbedding, embeddingLiftIso_inv_app, add_apply, equivalenceSelfOfHasFiniteBiproducts_functor, Embedding.instFaithfulEmbedding, embedding_obj_fintype, lift_additive, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, CategoryTheory.Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, lift_map, equivalenceSelfOfHasFiniteBiproducts_inverse, CategoryTheory.Functor.mapMat__obj_fintype, isoBiproductEmbedding_inv, comp_apply, hasFiniteBiproducts, CategoryTheory.Functor.mapMat__map, CategoryTheory.Functor.mapMatId_hom_app, CategoryTheory.Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, id_apply, CategoryTheory.Mat.equivalenceSingleObjInverse_map, id_def, Embedding.instFullEmbedding, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_str, id_apply_of_ne, CategoryTheory.Functor.mapMatId_inv_app, embedding_map, comp_def, CategoryTheory.Functor.mapMatComp_inv_app, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc
instInhabited 📖CompOp
instInhabitedHom 📖CompOp
instPreadditive 📖CompOp
9 mathmath: additiveObjIsoBiproduct_hom_π, ι_additiveObjIsoBiproduct_inv_assoc, isoBiproductEmbedding_hom, Embedding.instAdditiveEmbedding, lift_additive, ι_additiveObjIsoBiproduct_inv, isoBiproductEmbedding_inv, hasFiniteBiproducts, additiveObjIsoBiproduct_hom_π_assoc
isoBiproductEmbedding 📖CompOp
6 mathmath: additiveObjIsoBiproduct_hom_π, ι_additiveObjIsoBiproduct_inv_assoc, isoBiproductEmbedding_hom, ι_additiveObjIsoBiproduct_inv, isoBiproductEmbedding_inv, additiveObjIsoBiproduct_hom_π_assoc
liftUnique 📖CompOp
ι 📖CompOp
20 mathmath: additiveObjIsoBiproduct_hom_π, CategoryTheory.Functor.mapMat__obj_ι, embedding_obj_ι, additiveObjIsoBiproduct_naturality, ι_additiveObjIsoBiproduct_inv_assoc, additiveObjIsoBiproduct_naturality', lift_obj, instHasBiproductιObjEmbeddingXOfAdditive, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_carrier, isoBiproductEmbedding_hom, ι_additiveObjIsoBiproduct_inv, additiveObjIsoBiproduct_naturality_assoc, lift_map, isoBiproductEmbedding_inv, comp_apply, id_apply, id_def, comp_def, additiveObjIsoBiproduct_naturality'_assoc, additiveObjIsoBiproduct_hom_π_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply 📖mathematicalQuiver.Hom
CategoryTheory.Mat_
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroupHom
CategoryTheory.Preadditive.homGroup
X
additiveObjIsoBiproduct_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
embedding
X
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Iso.hom
additiveObjIsoBiproduct
CategoryTheory.Limits.biproduct.π
CategoryTheory.Functor.map
instPreadditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
fintype
isoBiproductEmbedding
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
CategoryTheory.Functor.hasBiproduct_of_preserves
CategoryTheory.Limits.biproduct.lift_π
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
additiveObjIsoBiproduct_hom_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
embedding
X
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Iso.hom
additiveObjIsoBiproduct
CategoryTheory.Limits.biproduct.π
CategoryTheory.Functor.map
instPreadditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
fintype
isoBiproductEmbedding
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
additiveObjIsoBiproduct_hom_π
additiveObjIsoBiproduct_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
embedding
X
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
additiveObjIsoBiproduct
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
Finite.of_fintype
fintype
CategoryTheory.Limits.biproduct.matrix
CategoryTheory.Limits.biproduct.hom_ext
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
Finite.of_fintype
CategoryTheory.Category.assoc
hasFiniteBiproducts
additiveObjIsoBiproduct_hom_π
CategoryTheory.Limits.biproduct.lift_π
CategoryTheory.Limits.biproduct.matrix_π
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.biproduct.hom_ext'
CategoryTheory.Functor.map_comp
ι_additiveObjIsoBiproduct_inv_assoc
CategoryTheory.Limits.biproduct.ι_desc
Finset.sum_congr
CategoryTheory.comp_dite
CategoryTheory.Limits.comp_zero
Finset.sum_dite_eq'
CategoryTheory.Category.comp_id
CategoryTheory.dite_comp
CategoryTheory.Limits.zero_comp
Finset.sum_dite_eq
CategoryTheory.Category.id_comp
additiveObjIsoBiproduct_naturality' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
X
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Iso.inv
additiveObjIsoBiproduct
CategoryTheory.Functor.map
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
Finite.of_fintype
fintype
CategoryTheory.Limits.biproduct.matrix
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
Finite.of_fintype
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
additiveObjIsoBiproduct_naturality
additiveObjIsoBiproduct_naturality'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
X
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Iso.inv
additiveObjIsoBiproduct
CategoryTheory.Functor.map
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
Finite.of_fintype
fintype
CategoryTheory.Limits.biproduct.matrix
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
Finite.of_fintype
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
additiveObjIsoBiproduct_naturality'
additiveObjIsoBiproduct_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
CategoryTheory.Functor.map
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
embedding
X
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Iso.hom
additiveObjIsoBiproduct
CategoryTheory.Limits.biproduct.matrix
Finite.of_fintype
fintype
instHasBiproductιObjEmbeddingXOfAdditive
Finite.of_fintype
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
additiveObjIsoBiproduct_naturality
comp_apply 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Mat_
CategoryTheory.Category.toCategoryStruct
instCategory
Finset.sum
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
X
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.univ
fintype
comp_def 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Mat_
CategoryTheory.Category.toCategoryStruct
instCategory
Finset.sum
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
X
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.univ
fintype
embeddingLiftIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Mat_
instCategory
embedding
lift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
embeddingLiftIso
CategoryTheory.Limits.biproduct.desc
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
embeddingLiftIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Mat_
instCategory
embedding
lift
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
embeddingLiftIso
CategoryTheory.Limits.biproduct.lift
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
embedding_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Mat_
instCategory
embedding
embedding_obj_X 📖mathematicalX
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
embedding_obj_fintype 📖mathematicalfintype
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
PUnit.fintype
embedding_obj_ι 📖mathematicalι
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
equivalenceSelfOfHasFiniteBiproducts_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Mat_
instCategory
equivalenceSelfOfHasFiniteBiproducts
lift
CategoryTheory.Functor.id
CategoryTheory.Functor.instAdditiveId
equivalenceSelfOfHasFiniteBiproducts_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Mat_
instCategory
equivalenceSelfOfHasFiniteBiproducts
embedding
hasFiniteBiproducts 📖mathematicalCategoryTheory.Limits.HasFiniteBiproducts
CategoryTheory.Mat_
instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
CategoryTheory.Limits.hasBiproduct_of_total
hom_ext
Finset.sum_congr
CategoryTheory.dite_comp
CategoryTheory.comp_dite
CategoryTheory.eqToHom_trans
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
Finset.sum_sigma
Finset.sum_dite_irrel
Finset.sum_const_zero
Finset.sum_dite_eq'
id_apply_self
CategoryTheory.eqToHom_refl
id_apply_of_ne
Finset.sum_apply
Finset.sum_eq_single
Finset.sum_eq_zero
CategoryTheory.Category.id_comp
hom_ext 📖DMatrix.ext_iff
hom_ext_iff 📖hom_ext
id_apply 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat_
CategoryTheory.Category.toCategoryStruct
instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
X
ι
CategoryTheory.eqToHom
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
id_apply_of_ne 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat_
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
id_apply_self 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat_
CategoryTheory.Category.toCategoryStruct
instCategory
X
id_def 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Mat_
CategoryTheory.Category.toCategoryStruct
instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
X
ι
CategoryTheory.eqToHom
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instHasBiproductιObjEmbeddingXOfAdditive 📖mathematicalCategoryTheory.Limits.HasBiproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
X
CategoryTheory.Functor.hasBiproduct_of_preserves
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Limits.PreservesBiproductsOfShape.preserves
CategoryTheory.Limits.PreservesFiniteBiproducts.preserves
CategoryTheory.Functor.preservesFiniteBiproductsOfAdditive
isoBiproductEmbedding_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Mat_
instCategory
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
CategoryTheory.Functor.obj
embedding
X
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
fintype
isoBiproductEmbedding
CategoryTheory.Limits.biproduct.lift
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
isoBiproductEmbedding_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Mat_
instCategory
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
CategoryTheory.Functor.obj
embedding
X
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
fintype
isoBiproductEmbedding
CategoryTheory.Limits.biproduct.desc
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
lift_additive 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Mat_
instCategory
instPreadditive
lift
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
CategoryTheory.Functor.map_add
CategoryTheory.Limits.biproduct.hom_ext
CategoryTheory.Limits.biproduct.hom_ext'
CategoryTheory.Limits.biproduct.matrix_π
CategoryTheory.Limits.biproduct.ι_desc
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.comp_add
lift_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Mat_
instCategory
lift
CategoryTheory.Limits.biproduct.matrix
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
X
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
lift_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
lift
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
ι_additiveObjIsoBiproduct_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
X
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.biproduct.ι
CategoryTheory.Iso.inv
additiveObjIsoBiproduct
CategoryTheory.Functor.map
instPreadditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
fintype
isoBiproductEmbedding
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
CategoryTheory.Functor.hasBiproduct_of_preserves
CategoryTheory.Limits.biproduct.ι_desc_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.biproduct.ι_desc
ι_additiveObjIsoBiproduct_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Mat_
instCategory
embedding
X
CategoryTheory.Limits.biproduct
ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.biproduct.ι
CategoryTheory.Iso.inv
additiveObjIsoBiproduct
CategoryTheory.Functor.map
instPreadditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
fintype
isoBiproductEmbedding
instHasBiproductιObjEmbeddingXOfAdditive
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
hasFiniteBiproducts
Finite.of_fintype
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_additiveObjIsoBiproduct_inv

CategoryTheory.Mat_.Embedding

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveEmbedding 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
CategoryTheory.Mat_.instPreadditive
CategoryTheory.Mat_.embedding
instFaithfulEmbedding 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
CategoryTheory.Mat_.embedding
instFullEmbedding 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Mat_
CategoryTheory.Mat_.instCategory
CategoryTheory.Mat_.embedding

CategoryTheory.Mat_.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
id 📖CompOp

---

← Back to Index