instPreadditiveOpposite 📖 | CompOp | 53 mathmath: opHom_apply, additive_yonedaObj, ShortComplex.Splitting.op_r, Pretriangulated.instIsTriangulatedOppositeOpOpEquivalence, ShiftedHom.opEquiv_symm_add, ShortComplex.Homotopy.unop_h₂, ShortComplex.Homotopy.op_h₀, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, ShortComplex.Homotopy.op_h₂, CochainComplex.homotopyUnop_hom_eq, ShortComplex.Homotopy.unop_h₃, Pretriangulated.instIsTriangulatedOppositeOpOp, Pretriangulated.instIsHomologicalOppositeAddCommGrpCatObjFunctorPreadditiveYoneda, additive_yonedaObj', Pretriangulated.op_distinguished, ShortComplex.Splitting.unop_r, unop_neg, Pretriangulated.mem_distTriang_op_iff, unop_add, CochainComplex.homotopyOp_hom_eq, unopHom_apply, Pretriangulated.mem_distTriang_op_iff', Functor.leftOp_additive, Pretriangulated.Opposite.functor_isTriangulated_op, ShortComplex.Homotopy.op_h₃, op_add, Abelian.instAdditiveOppositeFunctorAddCommGrpCatExtFunctor, ShortComplex.Homotopy.unop_h₁, preservesHomology_preadditiveYonedaObj_of_injective, linearYoneda_obj_additive, op_sum, ShortComplex.Splitting.op_s, ShiftedHom.opEquiv'_symm_add, Functor.op_isTriangulated_iff, op_zsmul, ShortComplex.Homotopy.op_h₁, Functor.rightOp_additive, unop_zsmul, Pretriangulated.Opposite.instAdditiveOppositeShiftFunctorInt, op_neg, op_sub, ShortComplex.Homotopy.unop_h₀, HomologicalComplex.opFunctor_additive, Pretriangulated.Opposite.instIsTriangulatedOpposite, ShortComplex.Splitting.unop_s, Pretriangulated.preadditiveYoneda_map_distinguished, Pretriangulated.Opposite.rotate_distinguished_triangle, unop_sub, Functor.op_additive, Functor.map_distinguished_op_exact, HomologicalComplex.unopFunctor_additive, Pretriangulated.instIsTriangulatedOppositeUnopUnop, unop_sum
|