Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Preadditive/Projective/Basic.lean

Statistics

MetricCount
DefinitionsmapProjectivePresentation, projectivePresentationOfMapProjectivePresentation, d, factorThru, over, syzygies, π, ProjectivePresentation, f, p, isProjective
11
Theoremsmap_projective, projective_of_map_projective, presentation, enoughProjectives_iff, map_projective_iff, projective_of_map_projective, projective, enoughProjectives, factorThru_comp, factorThru_comp_assoc, inst, instBiprod, instBiproduct, instCoprod, instSigmaObj, instSyzygies, iso_iff, of_iso, projective_iff_preservesEpimorphisms_coyoneda_obj, projective_over, zero_projective, π_epi, epi, projective
24
Total35

CategoryTheory

Definitions

NameCategoryTheorems
ProjectivePresentation 📖CompData
1 mathmath: EnoughProjectives.presentation
isProjective 📖CompOp

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
mapProjectivePresentation 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
map_projective 📖mathematicalCategoryTheory.Projective
CategoryTheory.Functor.obj
CategoryTheory.Projective.factors
CategoryTheory.Functor.map_epi
CategoryTheory.Category.assoc
counit_naturality
CategoryTheory.Functor.map_comp
left_triangle_components_assoc
projective_of_map_projective 📖mathematicalCategoryTheory.ProjectiveCategoryTheory.Projective.factors
CategoryTheory.Functor.map_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.PreservesColimitsOfSize0.preservesFiniteColimits
leftAdjoint_preservesColimits
instIsIsoAppUnitOfFullOfFaithful
CategoryTheory.Functor.map_injective
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
inv_map_unit
counit_naturality_assoc
left_triangle_components_assoc

CategoryTheory.EnoughProjectives

Theorems

NameKindAssumesProvesValidatesDepends On
presentation 📖mathematicalCategoryTheory.ProjectivePresentation

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
projectivePresentationOfMapProjectivePresentation 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
enoughProjectives_iff 📖mathematicalCategoryTheory.EnoughProjectivesCategoryTheory.EnoughProjectives.presentation
map_projective_iff 📖mathematicalCategoryTheory.Projective
CategoryTheory.Functor.obj
functor
CategoryTheory.Adjunction.projective_of_map_projective
full_functor
faithful_functor
CategoryTheory.Adjunction.map_projective
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
isEquivalence_inverse

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
projective_of_map_projective 📖mathematicalCategoryTheory.ProjectiveCategoryTheory.Projective.factors
map_epi
map_injective
map_comp
map_preimage

CategoryTheory.Limits.IsZero

Theorems

NameKindAssumesProvesValidatesDepends On
projective 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Projectiveeq_of_src

CategoryTheory.Projective

Definitions

NameCategoryTheorems
d 📖CompOp
2 mathmath: CategoryTheory.ProjectiveResolution.ofComplex_d_1_0, CategoryTheory.exact_d_f
factorThru 📖CompOp
2 mathmath: factorThru_comp_assoc, factorThru_comp
over 📖CompOp
3 mathmath: CategoryTheory.ProjectiveResolution.ofComplex_d_1_0, projective_over, π_epi
syzygies 📖CompOp
2 mathmath: instSyzygies, CategoryTheory.exact_d_f
π 📖CompOp
3 mathmath: CategoryTheory.ProjectiveResolution.ofComplex_d_1_0, CategoryTheory.ProjectiveResolution.of_def, π_epi

Theorems

NameKindAssumesProvesValidatesDepends On
factorThru_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
factorThru
factors
factorThru_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
factorThru
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factorThru_comp
inst 📖mathematicalCategoryTheory.Projective
CategoryTheory.types
CategoryTheory.surjective_of_epi
instBiprod 📖mathematicalCategoryTheory.Projective
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.hom_ext'
CategoryTheory.Limits.biprod.inl_desc_assoc
factorThru_comp
CategoryTheory.Limits.biprod.inr_desc_assoc
instBiproduct 📖mathematicalCategoryTheory.ProjectiveCategoryTheory.Limits.biproductCategoryTheory.Limits.biproduct.hom_ext'
CategoryTheory.Limits.biproduct.ι_desc_assoc
factorThru_comp
instCoprod 📖mathematicalCategoryTheory.Projective
CategoryTheory.Limits.coprod
CategoryTheory.Limits.coprod.desc_comp
factorThru_comp
CategoryTheory.Limits.coprod.hom_ext
CategoryTheory.Limits.colimit.ι_desc
instSigmaObj 📖mathematicalCategoryTheory.ProjectiveCategoryTheory.Limits.sigmaObjCategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.colimit.ι_desc_assoc
factorThru_comp
instSyzygies 📖mathematicalCategoryTheory.Projective
syzygies
projective_over
iso_iff 📖mathematicalCategoryTheory.Projectiveof_iso
of_iso 📖mathematicalCategoryTheory.Projectivefactors
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
projective_iff_preservesEpimorphisms_coyoneda_obj 📖mathematicalCategoryTheory.Projective
CategoryTheory.Functor.PreservesEpimorphisms
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.epi_iff_surjective
factorThru_comp
CategoryTheory.Functor.map_epi
projective_over 📖mathematicalCategoryTheory.Projective
over
CategoryTheory.ProjectivePresentation.projective
CategoryTheory.EnoughProjectives.presentation
zero_projective 📖mathematicalCategoryTheory.Projective
CategoryTheory.Limits.HasZeroObject.zero'
CategoryTheory.Limits.IsZero.projective
CategoryTheory.Limits.isZero_zero
π_epi 📖mathematicalCategoryTheory.Epi
over
π
CategoryTheory.ProjectivePresentation.epi
CategoryTheory.EnoughProjectives.presentation

CategoryTheory.Projective.Type

Theorems

NameKindAssumesProvesValidatesDepends On
enoughProjectives 📖mathematicalCategoryTheory.EnoughProjectives
CategoryTheory.types
CategoryTheory.Projective.inst
CategoryTheory.instEpiId

CategoryTheory.ProjectivePresentation

Definitions

NameCategoryTheorems
f 📖CompOp
1 mathmath: epi
p 📖CompOp
2 mathmath: projective, epi

Theorems

NameKindAssumesProvesValidatesDepends On
epi 📖mathematicalCategoryTheory.Epi
p
f
projective 📖mathematicalCategoryTheory.Projective
p

---

← Back to Index