Documentation Verification Report

Resolution

📁 Source: Mathlib/CategoryTheory/Preadditive/Projective/Resolution.lean

Statistics

MetricCount
DefinitionsmapProjectiveResolution, HasProjectiveResolution, HasProjectiveResolutions, ProjectiveResolution, hom, cokernelCofork, complex, isColimitCokernelCofork, self, π
10
TheoremsmapProjectiveResolution_complex, mapProjectiveResolution_π, out, out, hom_comp_π, hom_comp_π_assoc, hom_f_zero_comp_π_f_zero, hom_f_zero_comp_π_f_zero_assoc, complex_d_comp_π_f_zero, complex_d_comp_π_f_zero_assoc, complex_d_succ_comp, complex_exactAt_succ, exact_succ, hasHomology, instEpiFNatπ, projective, quasiIso, self_complex, self_π, π_f_succ
20
Total30

CategoryTheory

Definitions

NameCategoryTheorems
HasProjectiveResolution 📖CompData
2 mathmath: HasProjectiveResolutions.out, ProjectiveResolution.instHasProjectiveResolution
HasProjectiveResolutions 📖CompData
1 mathmath: ProjectiveResolution.instHasProjectiveResolutions
ProjectiveResolution 📖CompData
1 mathmath: HasProjectiveResolution.out

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapProjectiveResolution 📖CompOp
2 mathmath: mapProjectiveResolution_π, mapProjectiveResolution_complex

Theorems

NameKindAssumesProvesValidatesDepends On
mapProjectiveResolution_complex 📖mathematicalCategoryTheory.ProjectiveResolution.complex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
obj
mapProjectiveResolution
HomologicalComplex
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
mapHomologicalComplex
preservesZeroMorphisms_of_additive
preservesZeroMorphisms_of_additive
mapProjectiveResolution_π 📖mathematicalCategoryTheory.ProjectiveResolution.π
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
obj
mapProjectiveResolution
CategoryTheory.CategoryStruct.comp
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
HomologicalComplex
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.ProjectiveResolution.complex
ChainComplex.single₀
map
CategoryTheory.NatTrans.app
comp
HomologicalComplex.single
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
HomologicalComplex.singleMapHomologicalComplex
preservesZeroMorphisms_of_additive

CategoryTheory.HasProjectiveResolution

Theorems

NameKindAssumesProvesValidatesDepends On
out 📖mathematicalCategoryTheory.ProjectiveResolution

CategoryTheory.HasProjectiveResolutions

Theorems

NameKindAssumesProvesValidatesDepends On
out 📖mathematicalCategoryTheory.HasProjectiveResolution

CategoryTheory.ProjectiveResolution

Definitions

NameCategoryTheorems
cokernelCofork 📖CompOp
complex 📖CompOp
47 mathmath: quasiIso, lift_commutes_zero_assoc, homotopyEquiv_inv_π_assoc, homotopyEquiv_hom_π, cochainComplex_d, CategoryTheory.Functor.mapProjectiveResolution_π, CategoryTheory.Functor.mapProjectiveResolution_complex, Hom.hom_comp_π_assoc, Rep.barResolution_complex, Hom.hom'_f_assoc, pOpcycles_comp_fromLeftDerivedZero'_assoc, homotopyEquiv_inv_π, instIsIsoFromLeftDerivedZero'Self, π'_f_zero_assoc, π_f_succ, Hom.hom'_f, pOpcycles_comp_fromLeftDerivedZero', Hom.hom_f_zero_comp_π_f_zero_assoc, lift_commutes_zero, leftDerived_app_eq, lift_commutes, homotopyEquiv_hom_π_assoc, complex_d_comp_π_f_zero, Hom.hom_comp_π, exact_succ, π'_f_zero, complex_d_succ_comp, hasHomology, extMk_zero, self_complex, lift_commutes_assoc, leftDerivedToHomotopyCategory_app_eq, Rep.FiniteCyclicGroup.resolution_complex, Hom.hom_f_zero_comp_π_f_zero, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, exact₀, projective, liftFOne_zero_comm, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, instEpiFNatπ, complex_d_comp_π_f_zero_assoc, cochainComplex_d_assoc, fromLeftDerivedZero_eq, complex_exactAt_succ, CategoryTheory.instIsIsoFromLeftDerivedZero', Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
isColimitCokernelCofork 📖CompOp
self 📖CompOp
3 mathmath: self_π, instIsIsoFromLeftDerivedZero'Self, self_complex
π 📖CompOp
25 mathmath: quasiIso, lift_commutes_zero_assoc, homotopyEquiv_inv_π_assoc, homotopyEquiv_hom_π, self_π, CategoryTheory.Functor.mapProjectiveResolution_π, Hom.hom_comp_π_assoc, pOpcycles_comp_fromLeftDerivedZero'_assoc, homotopyEquiv_inv_π, π'_f_zero_assoc, π_f_succ, pOpcycles_comp_fromLeftDerivedZero', Hom.hom_f_zero_comp_π_f_zero_assoc, lift_commutes_zero, lift_commutes, homotopyEquiv_hom_π_assoc, complex_d_comp_π_f_zero, Hom.hom_comp_π, π'_f_zero, lift_commutes_assoc, Hom.hom_f_zero_comp_π_f_zero, exact₀, instEpiFNatπ, complex_d_comp_π_f_zero_assoc, Rep.FiniteCyclicGroup.resolution_π

Theorems

NameKindAssumesProvesValidatesDepends On
complex_d_comp_π_f_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.d
HomologicalComplex.Hom.f
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.Hom.comm
HomologicalComplex.single_obj_d
CategoryTheory.Limits.comp_zero
complex_d_comp_π_f_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
HomologicalComplex.d
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
complex_d_comp_π_f_zero
complex_d_succ_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.shape
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
CategoryTheory.Limits.comp_zero
complex_exactAt_succ 📖mathematicalHomologicalComplex.ExactAt
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
AddRightCancelSemigroup.toIsRightCancelAdd
hasHomology
HomologicalComplex.instHasHomologyObjSingle
quasiIsoAt_iff_exactAt'
ChainComplex.exactAt_succ_single_obj
QuasiIso.quasiIsoAt
quasiIso
exact_succ 📖mathematicalCategoryTheory.ShortComplex.Exact
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
HomologicalComplex.d
HomologicalComplex.d_comp_d
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.exactAt_iff'
ChainComplex.prev
ChainComplex.next_nat_succ
complex_exactAt_succ
hasHomology 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
instEpiFNatπ 📖mathematicalCategoryTheory.Epi
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
π
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.epi_of_isColimit_cofork
π_f_succ
CategoryTheory.Limits.HasZeroObject.instEpi
projective 📖mathematicalCategoryTheory.Projective
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
quasiIso 📖mathematicalQuasiIso
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
π
hasHomology
HomologicalComplex.instHasHomologyObjSingle
self_complex 📖mathematicalcomplex
self
CategoryTheory.Functor.obj
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
ChainComplex.single₀
AddRightCancelSemigroup.toIsRightCancelAdd
self_π 📖mathematicalπ
self
CategoryTheory.CategoryStruct.id
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.obj
ChainComplex.single₀
π_f_succ 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.IsZero.eq_of_tgt
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.isZero_single_obj_X

CategoryTheory.ProjectiveResolution.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
7 mathmath: hom_comp_π_assoc, CategoryTheory.ProjectiveResolution.mk₀_comp_extMk, hom'_f_assoc, hom'_f, hom_f_zero_comp_π_f_zero_assoc, hom_comp_π, hom_f_zero_comp_π_f_zero

Theorems

NameKindAssumesProvesValidatesDepends On
hom_comp_π 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ProjectiveResolution.complex
CategoryTheory.Functor.obj
ChainComplex.single₀
hom
CategoryTheory.ProjectiveResolution.π
CategoryTheory.Functor.map
HomologicalComplex.to_single_hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
hom_f_zero_comp_π_f_zero
ChainComplex.single₀_map_f_zero
hom_comp_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ProjectiveResolution.complex
hom
CategoryTheory.Functor.obj
ChainComplex.single₀
CategoryTheory.ProjectiveResolution.π
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom_comp_π
hom_f_zero_comp_π_f_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.ProjectiveResolution.complex
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
hom
CategoryTheory.ProjectiveResolution.π
CategoryTheory.Functor.map
hom_f_zero_comp_π_f_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.ProjectiveResolution.complex
HomologicalComplex.Hom.f
hom
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
CategoryTheory.ProjectiveResolution.π
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom_f_zero_comp_π_f_zero

---

← Back to Index