Documentation Verification Report

SingleObj

📁 Source: Mathlib/CategoryTheory/Preadditive/SingleObj.lean

Statistics

MetricCount
DefinitionsSingleObj, instPreadditiveSingleObj
2
Theorems0
Total2

CategoryTheory

Definitions

NameCategoryTheorems
SingleObj 📖CompOp
106 mathmath: Limits.SingleObj.Types.sections.equivFixedPoints_apply_coe, Action.instIsEquivalenceFunctorSingleObjInverse, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, SingleObj.id_as_one, SingleObj.mapHom_id, Action.functorCategoryEquivalence_inverse, Action.FunctorCategoryEquivalence.counitIso_inv_app_app, Action.functorCategoryEquivalence_unitIso, Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Action.leftUnitor_inv_hom, PreGaloisCategory.FiberFunctor.instPreservesColimitsOfShapeFintypeCatSingleObjOfFinite, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, MulEquiv.toSingleObjEquiv_inverse_map, PreGaloisCategory.FiberFunctor.preservesQuotientsByFiniteGroups, Action.whiskerRight_hom, Limits.SingleObj.Types.colimitEquivQuotient_symm_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, PreGaloisCategory.isGalois_iff_aux, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, MonoidHom.id_toFunctor, Rep.homEquiv_apply_hom, FintypeCat.instHasColimitsOfShapeSingleObjFintypeCatOfFinite, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_map, actionAsFunctor_map, Action.FunctorCategoryEquivalence.unitIso_inv_app_hom, Action.FunctorCategoryEquivalence.functor_map_app, Rep.MonoidalClosed.linearHomEquivComm_hom, Limits.SingleObj.Types.colimitEquivQuotient_apply, Action.FunctorCategoryEquivalence.functor_δ, SingleObj.inv_as_inv, MulEquiv.toSingleObjEquiv_unitIso_hom, Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, SingleObj.comp_as_mul, ActionCategory.uncurry_map, Mat.equivalenceSingleObjInverse_obj_carrier, Action.functorCategoryEquivalence_functor, SingleObj.functor_map, ActionCategory.coe_back, SingleObj.toEnd_def, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, MulEquiv.toSingleObjEquiv_functor_obj, Action.instIsEquivalenceFunctorSingleObjFunctor, MulEquiv.toSingleObjEquiv_counitIso_hom, IsFreeGroupoid.ext_functor_iff, SingleObj.functor_obj, Limits.SingleObj.Types.limitEquivFixedPoints_symm_apply, Action.FunctorCategoryEquivalence.inverse_obj_ρ_apply, ActionCategory.π_obj, PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, PreGaloisCategory.instHasColimitsOfShapeSingleObjOfFinite, MulEquiv.toSingleObjEquiv_inverse_obj, MulEquiv.toSingleObjEquiv_unitIso_inv, Limits.SingleObj.colimitTypeRelEquivOrbitRelQuotient_apply, Units.toAut_hom, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_obj, MulEquiv.toSingleObjEquiv_counitIso_inv, ActionCategory.back_coe, SingleObj.differenceFunctor_map, Limits.SingleObj.colimitTypeRel_iff_orbitRel, ActionCategory.curry_apply_left, SingleObj.mapHom_comp, Action.functorCategoryEquivalence_counitIso, MonoidHom.comp_toFunctor, Action.FunctorCategoryEquivalence.inverse_obj_V, PreGaloisCategory.instPreservesColimitsOfShapeFintypeCatSingleObjInclOfFinite, Action.FunctorCategoryEquivalence.unitIso_hom_app_hom, Limits.SingleObj.Types.limitEquivFixedPoints_apply_coe, Action.tensorHom_hom, Action.associator_hom_hom, Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, actionAsFunctor_obj, Limits.SingleObj.colimitTypeRelEquivOrbitRelQuotient_symm_apply, ActionCategory.comp_val, ActionCategory.uncurry_obj, Action.FunctorCategoryEquivalence.inverse_map_hom, PreGaloisCategory.hasQuotientsByFiniteGroups, Action.whiskerLeft_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Units.toAut_inv, IsFreeGroupoid.unique_lift, ActionCategory.id_val, SingleObj.differenceFunctor_obj, Action.FunctorCategoryEquivalence.counitIso_hom_app_app, Rep.homEquiv_symm_apply_hom, PreGaloisCategory.IsGalois.quotientByAutTerminal, Action.FunctorCategoryEquivalence.functor_μ, ActionCategory.stabilizerIsoEnd_apply, Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, ActionCategory.homOfPair.val, Rep.ihom_coev_app_hom, Action.rightUnitor_hom_hom, ActionCategory.π_map, Mat.equivalenceSingleObjInverse_map, Action.associator_inv_hom, Action.functorCategoryEquivalence_linear, Action.functorCategoryEquivalence_preservesZeroMorphisms, Limits.SingleObj.Types.sections.equivFixedPoints_symm_apply_coe, Mat.equivalenceSingleObjInverse_obj_str, Action.rightUnitor_inv_hom, MulEquiv.toSingleObjEquiv_functor_map, Action.functorCategoryEquivalence_additive, Action.FunctorCategoryEquivalence.functor_obj_map, ActionCategory.stabilizerIsoEnd_symm_apply, Action.leftUnitor_hom_hom, Action.FunctorCategoryEquivalence.functor_η, Action.FunctorCategoryEquivalence.functor_ε
instPreadditiveSingleObj 📖CompOp
7 mathmath: Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.equivalenceSingleObjInverse_obj_carrier, Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Mat.equivalenceSingleObjInverse_map, Mat.equivalenceSingleObjInverse_obj_str

---

← Back to Index