Documentation Verification Report

Injective

📁 Source: Mathlib/CategoryTheory/Preadditive/Yoneda/Injective.lean

Statistics

MetricCount
DefinitionsInjective
1
Theoremsinjective_iff_preservesEpimorphisms_preadditiveYoneda_obj, injective_iff_preservesEpimorphisms_preadditive_yoneda_obj'
2
Total3

CategoryTheory

Definitions

NameCategoryTheorems
Injective 📖CompData
46 mathmath: InjectiveResolution.injective, AddCommGrpCat.injective_of_divisible, Equivalence.map_injective_iff, Injective.injective_under, Functor.injective_obj_of_injective, Profinite.injective_of_light, Injective.injective_of_adjoint, Functor.PreservesInjectiveObjects.injective_obj, Injective.of_iso, Injective.injective_iff_projective_op, Adjunction.map_injective, Injective.injective_iff_preservesEpimorphisms_preadditive_yoneda_obj', Injective.instUnopOfProjectiveOpposite, Injective.projective_iff_injective_op, LightProfinite.injective, Injective.instOfNonempty, Injective.zero_injective, InjectivePresentation.injective, Injective.instOppositeOpOfProjective, FDRep.instInjectiveOfNeZeroCastCard, injective_iff_rlp_monomorphisms_of_isZero, AddCommGrpCat.injective_as_module_iff, CochainComplex.cm5b.instInjectiveXIntI, Injective.instProd, Module.injective_iff_injective_object, IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, Injective.instBiprod, Limits.IsZero.injective, injective_iff_hasInjectiveDimensionLT_one, injective_iff_subsingleton_ext_one, Profinite.injective_of_finite, Injective.injective_iff_preservesEpimorphisms_yoneda_obj, Module.injective_object_of_injective_module, Abelian.has_injective_coseparator, Adjunction.injective_of_map_injective, injective_of_preservesFiniteColimits_preadditiveYonedaObj, CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, Functor.injective_obj, Injective.injective_iff_preservesEpimorphisms_preadditiveYoneda_obj, injective_iff_rlp_monomorphisms_zero, ModuleCat.ulift_injective_of_injective, InjectiveResolution.instInjectiveXIntCochainComplex, InjectiveResolution.instInjectiveXNatOfCocomplex, Injective.iso_iff, Rep.instInjective, Functor.injective_of_map_injective

CategoryTheory.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
injective_iff_preservesEpimorphisms_preadditiveYoneda_obj 📖mathematicalCategoryTheory.Injective
CategoryTheory.Functor.PreservesEpimorphisms
Opposite
CategoryTheory.Category.opposite
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.preadditiveYoneda
injective_iff_preservesEpimorphisms_yoneda_obj
CategoryTheory.Functor.preservesEpimorphisms_of_preserves_of_reflects
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.instFaithfulForget
CategoryTheory.Functor.preservesEpimorphisms_comp
AddCommGrpCat.forget_commGrp_preserves_epi
injective_iff_preservesEpimorphisms_preadditive_yoneda_obj' 📖mathematicalCategoryTheory.Injective
CategoryTheory.Functor.PreservesEpimorphisms
Opposite
CategoryTheory.Category.opposite
ModuleCat
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Preadditive.instRingEnd
ModuleCat.moduleCategory
CategoryTheory.preadditiveYonedaObj
injective_iff_preservesEpimorphisms_yoneda_obj
CategoryTheory.Functor.preservesEpimorphisms_of_preserves_of_reflects
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.instFaithfulForget
CategoryTheory.Functor.preservesEpimorphisms_comp
ModuleCat.forget_preservesEpimorphisms

---

← Back to Index