Documentation Verification Report

Adjunction

📁 Source: Mathlib/CategoryTheory/Presentable/Adjunction.lean

Statistics

MetricCount
Definitions0
TheoremshasCardinalFilteredGenerator, isCardinalAccessibleCategory, isCardinalFilteredGenerator, isCardinalLocallyPresentable, isCardinalPresentable_leftAdjoint_obj, hasCardinalFilteredGenerator, isAccessibleCategory, isCardinalAccessibleCategory, isCardinalLocallyPresentable, isLocallyPresentable
10
Total10

CategoryTheory.Adjunction

Theorems

NameKindAssumesProvesValidatesDepends On
hasCardinalFilteredGenerator 📖mathematicalCategoryTheory.HasCardinalFilteredGeneratorCategoryTheory.locallySmall_of_faithful
CategoryTheory.HasCardinalFilteredGenerator.toLocallySmall
CategoryTheory.HasCardinalFilteredGenerator.exists_generator
CategoryTheory.ObjectProperty.instEssentiallySmallMap
isCardinalFilteredGenerator
isCardinalAccessibleCategory 📖mathematicalCategoryTheory.IsCardinalAccessibleCategoryhasCardinalFilteredGenerator
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
CategoryTheory.hasColimitsOfShape_of_reflective
CategoryTheory.HasCardinalFilteredColimits.hasColimitsOfShape
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredColimits
isCardinalFilteredGenerator 📖mathematicalCategoryTheory.ObjectProperty.IsCardinalFilteredGeneratorCategoryTheory.ObjectProperty.mapCategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.le_isCardinalPresentable
CategoryTheory.isCardinalPresentable_iff
isCardinalPresentable_leftAdjoint_obj
CategoryTheory.isCardinalPresentable_of_iso
isLeftAdjoint
CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.exists_colimitsOfShape
CategoryTheory.ObjectProperty.prop_of_isIso
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsColimitsOfShape
instIsIsoAppCounitOfFullOfFaithful
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.ObjectProperty.prop_map_obj
CategoryTheory.ObjectProperty.ColimitOfShape.prop_diag_obj
isCardinalLocallyPresentable 📖mathematicalCategoryTheory.IsCardinalLocallyPresentablehasCardinalFilteredGenerator
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
CategoryTheory.instIsCardinalAccessibleCategoryOfIsCardinalLocallyPresentable
CategoryTheory.hasColimits_of_reflective
CategoryTheory.IsCardinalLocallyPresentable.toHasColimitsOfSize
isCardinalPresentable_leftAdjoint_obj 📖mathematicalCategoryTheory.IsCardinalPresentable
CategoryTheory.Functor.obj
CategoryTheory.isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj
CategoryTheory.Functor.isCardinalAccessible_of_natIso
CategoryTheory.Functor.instIsCardinalAccessibleComp
CategoryTheory.instIsCardinalAccessibleObjOppositeFunctorTypeUliftCoyonedaOpOfIsCardinalPresentable

CategoryTheory.Equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
hasCardinalFilteredGenerator 📖mathematicalCategoryTheory.HasCardinalFilteredGeneratorCategoryTheory.Adjunction.hasCardinalFilteredGenerator
CategoryTheory.Functor.instIsCardinalAccessibleOfPreservesColimitsOfSize
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
isEquivalence_inverse
full_inverse
faithful_inverse
isAccessibleCategory 📖mathematicalCategoryTheory.IsAccessibleCategoryCategoryTheory.IsAccessibleCategory.exists_cardinal
isCardinalAccessibleCategory
isCardinalAccessibleCategory 📖mathematicalCategoryTheory.IsCardinalAccessibleCategoryCategoryTheory.Adjunction.isCardinalAccessibleCategory
CategoryTheory.Functor.instIsCardinalAccessibleOfPreservesColimitsOfSize
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
isEquivalence_inverse
full_inverse
faithful_inverse
isCardinalLocallyPresentable 📖mathematicalCategoryTheory.IsCardinalLocallyPresentableCategoryTheory.Adjunction.isCardinalLocallyPresentable
CategoryTheory.Functor.instIsCardinalAccessibleOfPreservesColimitsOfSize
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
isEquivalence_inverse
full_inverse
faithful_inverse
isLocallyPresentable 📖mathematicalCategoryTheory.IsLocallyPresentableCategoryTheory.IsLocallyPresentable.exists_cardinal
isCardinalLocallyPresentable

---

← Back to Index