Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Presentable/Basic.lean

Statistics

MetricCount
DefinitionsIsAccessible, IsCardinalAccessible, HasCardinalFilteredColimits, IsCardinalPresentable, IsPresentable, isCardinalPresentable
6
Theoremsexists_cardinal, preservesColimitOfShape, instIsAccessibleComp, instIsAccessibleObjConst, instIsCardinalAccessibleComp, instIsCardinalAccessibleId, instIsCardinalAccessibleObjConst, instIsCardinalAccessibleOfPreservesColimitsOfSize, isAccessible_of_isCardinalAccessible, isCardinalAccessible_of_le, isCardinalAccessible_of_natIso, preservesColimitsOfShape_of_isCardinalAccessible, preservesColimitsOfShape_of_isCardinalAccessible_of_essentiallySmall, hasColimitsOfShape, exists_eq_of_isColimit, exists_eq_of_isColimit', exists_hom_of_isColimit, instHasCardinalFilteredColimitsOfHasColimitsOfSize, instIsCardinalAccessibleObjOppositeFunctorTypeUliftCoyonedaOpOfIsCardinalPresentable, instIsCardinalPresentableObjFullSubcategoryIsCardinalPresentableι, instIsCardinalPresentableObjIsCardinalPresentable, instIsClosedUnderIsomorphismsIsCardinalPresentable, isCardinalPresentable_iff, isCardinalPresentable_iff_isCardinalAccessible_coyoneda_obj, isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj, isCardinalPresentable_iff_of_isEquivalence, isCardinalPresentable_monotone, isCardinalPresentable_of_equivalence, isCardinalPresentable_of_isEquivalence, isCardinalPresentable_of_iso, isCardinalPresentable_of_le, isPresentable_of_isCardinalPresentable, preservesColimitsOfShape_of_isCardinalPresentable, preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall
34
Total40

CategoryTheory

Definitions

NameCategoryTheorems
HasCardinalFilteredColimits 📖CompData
4 mathmath: IsCardinalAccessibleCategory.toHasCardinalFilteredColimits, HasCardinalFilteredColimits_iff_hasFilteredColimitsOfSize, instHasCardinalFilteredColimitsOfHasColimitsOfSize, HasCardinalFilteredColimits_iff_hasFilteredColimits
IsCardinalPresentable 📖MathDef
17 mathmath: Presheaf.instIsCardinalPresentableFunctorOppositeFreeYonedaOfHasColimitsOfSize, instIsCardinalPresentableObjIsCardinalPresentable, isCardinalPresentable_of_isEquivalence, isCardinalPresentable_of_iso, Adjunction.isCardinalPresentable_leftAdjoint_obj, ObjectProperty.ColimitOfShape.isCardinalPresentable, Types.isCardinalPresentable_iff, isCardinalPresentable_iff_of_isEquivalence, isCardinalPresentable_iff, isCardinalPresentable_of_le, Presheaf.instIsCardinalPresentableFunctorOppositeTypeObjUliftYonedaOfHasColimitsOfSize, isCardinalPresentable_iff_isCardinalAccessible_coyoneda_obj, instIsCardinalPresentableObjFullSubcategoryIsCardinalPresentableι, isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj, isCardinalPresentable_of_equivalence, Retract.isCardinalPresentable, HasCardinalLT.isCardinalPresentable
IsPresentable 📖MathDef
4 mathmath: instIsPresentableOfIsAccessibleCategory, ObjectProperty.IsCardinalFilteredGenerator.presentable, isPresentable_of_isCardinalPresentable, Types.instIsPresentable
isCardinalPresentable 📖CompOp
17 mathmath: instIsCardinalPresentableObjIsCardinalPresentable, instIsStableUnderRetractsIsCardinalPresentable, IsCardinalLocallyPresentable.iff_exists_isStrongGenerator, instIsClosedUnderIsomorphismsIsCardinalPresentable, IsCardinalAccessibleCategory.final_toCostructuredArrow, isCardinalPresentable_monotone, ObjectProperty.IsCardinalFilteredGenerator.le_isCardinalPresentable, ObjectProperty.IsCardinalFilteredGenerator.isPresentable_eq_retractClosure, isCardinalPresentable_iff, instEssentiallySmallIsCardinalPresentableOfHasCardinalFilteredGenerator, ObjectProperty.IsCardinalFilteredGenerator.essentiallySmall_isPresentable, IsCardinalAccessibleCategory.instIsDenseFullSubcategoryIsCardinalPresentableι, instIsCardinalPresentableObjFullSubcategoryIsCardinalPresentableι, isClosedUnderColimitsOfShape_isCardinalPresentable, IsCardinalAccessibleCategory.instIsCardinalFilteredCostructuredArrowFullSubcategoryIsCardinalPresentableι, ObjectProperty.isFinitelyPresentable_eq_isCardinalPresentable, isCardinalFilteredGenerator_isCardinalPresentable

Theorems

NameKindAssumesProvesValidatesDepends On
instHasCardinalFilteredColimitsOfHasColimitsOfSize 📖mathematical—HasCardinalFilteredColimits—Limits.hasColimitsOfShapeOfHasColimitsOfSize
instIsCardinalAccessibleObjOppositeFunctorTypeUliftCoyonedaOpOfIsCardinalPresentable 📖mathematical—Functor.IsCardinalAccessible
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
uliftCoyoneda
Opposite.op
—isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj
instIsCardinalPresentableObjFullSubcategoryIsCardinalPresentableι 📖mathematical—IsCardinalPresentable
Functor.obj
ObjectProperty.FullSubcategory
isCardinalPresentable
ObjectProperty.FullSubcategory.category
ObjectProperty.ι
—instIsCardinalPresentableObjIsCardinalPresentable
instIsCardinalPresentableObjIsCardinalPresentable 📖mathematical—IsCardinalPresentable
ObjectProperty.FullSubcategory.obj
isCardinalPresentable
—ObjectProperty.FullSubcategory.property
instIsClosedUnderIsomorphismsIsCardinalPresentable 📖mathematical—ObjectProperty.IsClosedUnderIsomorphisms
isCardinalPresentable
—isCardinalPresentable_iff
isCardinalPresentable_of_iso
isCardinalPresentable_iff 📖mathematical—isCardinalPresentable
IsCardinalPresentable
——
isCardinalPresentable_iff_isCardinalAccessible_coyoneda_obj 📖mathematical—IsCardinalPresentable
Functor.IsCardinalAccessible
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
——
isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj 📖mathematical—IsCardinalPresentable
Functor.IsCardinalAccessible
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
uliftCoyoneda
Opposite.op
—Functor.instIsCardinalAccessibleComp
Functor.instIsCardinalAccessibleOfPreservesColimitsOfSize
Limits.Types.instPreservesColimitsOfSizeUliftFunctor
Functor.preservesColimitsOfShape_of_isCardinalAccessible
Limits.preservesColimitsOfShape_of_reflects_of_preserves
Limits.reflectsColimitsOfShape_of_reflectsColimits
Limits.fullyFaithful_reflectsColimits
uliftFunctor_full
uliftFunctor_faithful
isCardinalPresentable_iff_of_isEquivalence 📖mathematical—IsCardinalPresentable
Functor.obj
—isCardinalPresentable_of_iso
isCardinalPresentable_of_isEquivalence
Functor.isEquivalence_inv
isCardinalPresentable_monotone 📖mathematicalCardinal
Cardinal.instLE
ObjectProperty
Category.toCategoryStruct
Pi.hasLe
Prop.le
isCardinalPresentable
—isCardinalPresentable_iff
isCardinalPresentable_of_le
isCardinalPresentable_of_equivalence 📖mathematical—IsCardinalPresentable
Functor.obj
Equivalence.functor
—preservesColimitsOfShape_of_isCardinalPresentable
types_ext
Adjunction.homEquiv_unit
Functor.map_comp
Category.assoc
Limits.preservesColimit_of_natIso
Limits.comp_preservesColimit
Limits.PreservesColimitsOfShape.preservesColimit
Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
Functor.isLeftAdjoint_of_isEquivalence
Equivalence.isEquivalence_inverse
preservesColimit_comp_of_createsColimit
Limits.comp_preservesColimitsOfShape
Limits.PreservesColimitsOfSize.preservesColimitsOfShape
Limits.Types.instPreservesColimitsOfSizeUliftFunctor
Limits.reflectsColimit_of_reflectsColimitsOfShape
Limits.reflectsColimitsOfShape_of_reflectsColimits
Limits.fullyFaithful_reflectsColimits
uliftFunctor_full
uliftFunctor_faithful
isCardinalPresentable_of_isEquivalence 📖mathematical—IsCardinalPresentable
Functor.obj
—isCardinalPresentable_of_equivalence
isCardinalPresentable_of_iso 📖mathematical—IsCardinalPresentable—Functor.isCardinalAccessible_of_natIso
isCardinalPresentable_of_le 📖mathematicalCardinal
Cardinal.instLE
IsCardinalPresentable—Functor.isCardinalAccessible_of_le
isPresentable_of_isCardinalPresentable 📖mathematical—IsPresentable——
preservesColimitsOfShape_of_isCardinalPresentable 📖mathematical—Limits.PreservesColimitsOfShape
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
—Functor.preservesColimitsOfShape_of_isCardinalAccessible
preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall 📖mathematical—Limits.PreservesColimitsOfShape
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
—Functor.preservesColimitsOfShape_of_isCardinalAccessible_of_essentiallySmall

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsAccessible 📖CompData
3 mathmath: isAccessible_of_isCardinalAccessible, instIsAccessibleComp, instIsAccessibleObjConst
IsCardinalAccessible 📖CompData
11 mathmath: instIsCardinalAccessibleOfPreservesColimitsOfSize, isCardinalAccessible_of_natIso, IsAccessible.exists_cardinal, instIsCardinalAccessibleComp, instIsCardinalAccessibleObjConst, isCardinalAccessible_of_le, instIsCardinalAccessibleId, CategoryTheory.isCardinalPresentable_iff_isCardinalAccessible_coyoneda_obj, CategoryTheory.isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj, CategoryTheory.MorphismProperty.isCardinalAccessible_ι_isLocal, CategoryTheory.instIsCardinalAccessibleObjOppositeFunctorTypeUliftCoyonedaOpOfIsCardinalPresentable

Theorems

NameKindAssumesProvesValidatesDepends On
instIsAccessibleComp 📖mathematical—IsAccessible
comp
—IsAccessible.exists_cardinal
Fact.out
isCardinalAccessible_of_le
isAccessible_of_isCardinalAccessible
instIsCardinalAccessibleComp
instIsAccessibleObjConst 📖mathematical—IsAccessible
obj
CategoryTheory.Functor
category
const
—Cardinal.fact_isRegular_aleph0
instIsCardinalAccessibleObjConst
instIsCardinalAccessibleComp 📖mathematical—IsCardinalAccessible
comp
—preservesColimitsOfShape_of_isCardinalAccessible
CategoryTheory.Limits.comp_preservesColimitsOfShape
instIsCardinalAccessibleId 📖mathematical—IsCardinalAccessible
id
—instPreservesColimitsOfShapeOfIsLeftAdjoint
isLeftAdjoint_of_isEquivalence
isEquivalence_refl
instIsCardinalAccessibleObjConst 📖mathematical—IsCardinalAccessible
obj
CategoryTheory.Functor
category
const
—CategoryTheory.isFiltered_of_isCardinalFiltered
CategoryTheory.IsIso.id
CategoryTheory.IsFiltered.nonempty
instIsCardinalAccessibleOfPreservesColimitsOfSize 📖mathematical—IsCardinalAccessible—CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
isAccessible_of_isCardinalAccessible 📖mathematical—IsAccessible——
isCardinalAccessible_of_le 📖mathematicalCardinal
Cardinal.instLE
IsCardinalAccessible—CategoryTheory.IsCardinalFiltered.of_le
preservesColimitsOfShape_of_isCardinalAccessible
isCardinalAccessible_of_natIso 📖mathematical—IsCardinalAccessible—preservesColimitsOfShape_of_isCardinalAccessible
CategoryTheory.Limits.preservesColimitsOfShape_of_natIso
preservesColimitsOfShape_of_isCardinalAccessible 📖mathematical—CategoryTheory.Limits.PreservesColimitsOfShape—IsCardinalAccessible.preservesColimitOfShape
preservesColimitsOfShape_of_isCardinalAccessible_of_essentiallySmall 📖mathematical—CategoryTheory.Limits.PreservesColimitsOfShape—CategoryTheory.IsCardinalFiltered.of_equivalence
preservesColimitsOfShape_of_isCardinalAccessible
CategoryTheory.Limits.preservesColimitsOfShape_of_equiv

CategoryTheory.Functor.IsAccessible

Theorems

NameKindAssumesProvesValidatesDepends On
exists_cardinal 📖mathematical—CategoryTheory.Functor.IsCardinalAccessible——

CategoryTheory.Functor.IsCardinalAccessible

Theorems

NameKindAssumesProvesValidatesDepends On
preservesColimitOfShape 📖mathematical—CategoryTheory.Limits.PreservesColimitsOfShape——

CategoryTheory.HasCardinalFilteredColimits

Theorems

NameKindAssumesProvesValidatesDepends On
hasColimitsOfShape 📖mathematical—CategoryTheory.Limits.HasColimitsOfShape——

CategoryTheory.IsCardinalPresentable

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_of_isColimit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.map—CategoryTheory.preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall
CategoryTheory.isFiltered_of_isCardinalFiltered
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
exists_eq_of_isColimit' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.map—CategoryTheory.preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall
CategoryTheory.isFiltered_of_isCardinalFiltered
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff'
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
exists_hom_of_isColimit 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
—CategoryTheory.preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit

---

← Back to Index