Documentation Verification Report

Dense

📁 Source: Mathlib/CategoryTheory/Presentable/Dense.lean

Statistics

MetricCount
DefinitionsDense
1
Theoremsfinal_toCostructuredArrow, instIsCardinalFilteredCostructuredArrowFullSubcategoryIsCardinalPresentableι, instIsDenseFullSubcategoryIsCardinalPresentableι, instEssentiallySmallIsFinitelyPresentable, instIsDenseFullSubcategoryIsFinitelyPresentableι, instIsFilteredCostructuredArrowFullSubcategoryIsFinitelyPresentableι, isCardinalFilteredGenerator_isCardinalPresentable
7
Total8

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isCardinalFilteredGenerator_isCardinalPresentable 📖mathematicalObjectProperty.IsCardinalFilteredGenerator
isCardinalPresentable
HasCardinalFilteredGenerator.exists_generator
IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
ObjectProperty.IsCardinalFilteredGenerator.of_le_isoClosure
ObjectProperty.isoClosure_eq_self
instIsClosedUnderIsomorphismsIsCardinalPresentable
ObjectProperty.IsCardinalFilteredGenerator.le_isCardinalPresentable
le_rfl

CategoryTheory.IsCardinalAccessibleCategory

Theorems

NameKindAssumesProvesValidatesDepends On
final_toCostructuredArrow 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.CostructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.isCardinalPresentable
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow
CategoryTheory.isFiltered_of_isCardinalFiltered
CategoryTheory.Functor.final_iff_of_isFiltered
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit
CategoryTheory.instIsCardinalPresentableObjFullSubcategoryIsCardinalPresentableι
CategoryTheory.IsCardinalPresentable.exists_eq_of_isColimit'
CategoryTheory.instIsCardinalPresentableObjIsCardinalPresentable
CategoryTheory.CostructuredArrow.w
CategoryTheory.ObjectProperty.ColimitOfShape.prop_diag_obj
CategoryTheory.ObjectProperty.hom_ext
instIsCardinalFilteredCostructuredArrowFullSubcategoryIsCardinalPresentableι 📖mathematicalCategoryTheory.IsCardinalFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.isCardinalPresentable
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.exists_colimitsOfShape
CategoryTheory.isCardinalFilteredGenerator_isCardinalPresentable
CategoryTheory.IsCardinalFiltered.of_final
final_toCostructuredArrow
CategoryTheory.essentiallySmall_of_small_of_locallySmall
UnivLE.small
UnivLE.self
CategoryTheory.locallySmall_of_univLE
instIsDenseFullSubcategoryIsCardinalPresentableι 📖mathematicalCategoryTheory.Functor.IsDense
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.isCardinalPresentable
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.exists_colimitsOfShape
CategoryTheory.isCardinalFilteredGenerator_isCardinalPresentable
final_toCostructuredArrow
CategoryTheory.essentiallySmall_of_small_of_locallySmall
UnivLE.small
UnivLE.self
CategoryTheory.locallySmall_of_univLE
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

CategoryTheory.IsFinitelyAccessibleCategory

Theorems

NameKindAssumesProvesValidatesDepends On
instEssentiallySmallIsFinitelyPresentable 📖mathematicalCategoryTheory.ObjectProperty.EssentiallySmall
CategoryTheory.ObjectProperty.isFinitelyPresentable
Cardinal.fact_isRegular_aleph0
CategoryTheory.ObjectProperty.isFinitelyPresentable_eq_isCardinalPresentable
CategoryTheory.instEssentiallySmallIsCardinalPresentableOfHasCardinalFilteredGenerator
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
instIsDenseFullSubcategoryIsFinitelyPresentableι 📖mathematicalCategoryTheory.Functor.IsDense
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.isFinitelyPresentable
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
Cardinal.fact_isRegular_aleph0
CategoryTheory.ObjectProperty.isFinitelyPresentable_eq_isCardinalPresentable
CategoryTheory.IsCardinalAccessibleCategory.instIsDenseFullSubcategoryIsCardinalPresentableι
instIsFilteredCostructuredArrowFullSubcategoryIsFinitelyPresentableι 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.isFinitelyPresentable
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryCostructuredArrow
Cardinal.fact_isRegular_aleph0
CategoryTheory.isCardinalFiltered_aleph0_iff
CategoryTheory.ObjectProperty.isFinitelyPresentable_eq_isCardinalPresentable
CategoryTheory.IsCardinalAccessibleCategory.instIsCardinalFilteredCostructuredArrowFullSubcategoryIsCardinalPresentableι

(root)

Definitions

NameCategoryTheorems
Dense 📖MathDef
98 mathmath: ContinuousMap.dense_setOf_contDiff, eventually_residual, AddAction.isTopologicallyTransitive_iff_dense_iUnion_preimage, dense_iff_exists_between, MulAction.isTopologicallyTransitive_iff_dense_iUnion_preimage, ContDiff.dense_compl_range_of_finrank_lt_finrank, Subgroup.dense_of_not_isolated_one, dense_of_mem_residual, Submodule.dense_iff_topologicalClosure_eq_top, AlgebraicGeometry.Scheme.RationalMap.dense_domain, EMetric.dense_iff, AddSubgroup.dense_of_no_min, IsOpen.dense_of_preimage_vadd_invariant, dense_liouville, dense_coborder, dense_closure, Subtype.dense_iff, dense_univ, dense_iUnion_interior_of_closed, denseRange_subtype_val, MeasureTheory.Measure.dense_of_ae, IsOpen.dense_of_preimage_smul_invariant, IsOpenQuotientMap.dense_preimage_iff, dense_discrete, AddCircle.dense_addSubgroup_iff_ne_zmultiples, Metric.dense_iff_iUnion_ball, MeasureTheory.dense_of_generateFrom_isSetRing, Metric.dense_iUnion_range_toInductiveLimit, UniqueDiffWithinAt.dense_tangentConeAt, dense_biUnion_interior_of_closed, ContDiffOn.dense_compl_image_of_dimH_lt_finrank, MeasureTheory.dense_of_generateFrom_isSetSemiring, dense_sUnion_interior_of_closed, dense_irrational, dense_iff_closure_eq, IsOpen.dense_iUnion_preimage_vadd, uniqueDiffWithinAt_iff, AddSubgroup.dense_iff_ne_zmultiples, isClosed_isNowhereDense_iff_compl, dense_of_nonempty_vadd_invariant, MeasureTheory.Lp.boundedContinuousFunction_dense, dense_differentiableAt_norm, IsOpen.dense_iUnion_preimage_smul, dense_addSubmonoidClosure_iff_addSubgroupClosure, QuotientGroup.dense_preimage_mk, IsSelfAdjoint.dense_domain, MulAction.dense_orbit, IsDenseEmbedding.dense_image, Metric.dense_iff, Subgroup.dense_or_cyclic, Set.Countable.dense_compl, dense_compl_singleton_iff_not_open, IsOpen.dense_iUnion_smul, IsOpen.dense, AddAction.IsMinimal.dense_orbit, TopologicalSpace.exists_countable_dense, QuotientAddGroup.dense_image_mk, mem_residual, Rat.dense_compl_compact, dense_submonoidClosure_iff_subgroupClosure, AddAction.dense_orbit, QuotientAddGroup.dense_preimage_mk, dense_addSubgroupClosure_pair_iff, AddAction.isTopologicallyTransitive_iff_dense_iUnion, dense_of_nonempty_smul_invariant, IsDenseInducing.dense_image, dense_compl_singleton, dense_iff_inter_open, LinearMap.isClosed_or_dense_ker, MulAction.isTopologicallyTransitive_iff_dense_iUnion, AddSubgroup.dense_or_cyclic, AlgebraicGeometry.Scheme.Hom.dense_smoothLocus_of_perfectField, MulAction.IsMinimal.dense_orbit, Topology.IsInducing.dense_iff, AddAction.isTopologicallyTransitive_iff_dense_of_preimage_invariant, Subgroup.dense_of_no_min, AlgebraicGeometry.Scheme.PartialMap.dense_domain, dense_compl_of_dimH_lt_finrank, exists_countable_dense_bot_top, ContinuousMapZero.adjoin_id_dense, MeasureTheory.Lp.dense_hasCompactSupport_contDiff, AddSubgroup.dense_of_not_isolated_zero, interior_eq_empty_iff_dense_compl, TopologicalSpace.separableSpace_iff, exists_countable_dense_no_bot_top, QuotientGroup.dense_image_mk, MulAction.isTopologicallyTransitive_iff_dense_of_preimage_invariant, Subgroup.dense_xor'_cyclic, mem_residual_iff, TopologicalSpace.SeparableSpace.exists_countable_dense, IsOpen.dense_iUnion_vadd, dense_of_exists_between, TopologicalSpace.IsTopologicalBasis.dense_iff, MeasureTheory.Lp.simpleFunc.dense, ENNReal.exists_countable_dense_no_zero_top, Submodule.isClosed_or_dense_of_isCoatom, AddSubgroup.dense_xor'_cyclic, Subgroup.dense_iff_ne_zpowers

---

← Back to Index