Documentation Verification Report

Directed

šŸ“ Source: Mathlib/CategoryTheory/Presentable/Directed.lean

Statistics

MetricCount
DefinitionsDiagram, ofExistsUnique, P, iSup, single, sup, DiagramWithUniqueTerminal, isTerminal, single, toDiagram, top, D₁, Dā‚‚, Dā‚ƒ, Dā‚„, functor, functorMap, instPartialOrderDiagramWithUniqueTerminal
18
Theoremsexists_cardinal_directed, comm, comm_assoc, hlift, instSubsingleton, lift_self, prop, prop_id, uniq, ext, ext_iff, hP, hW, iSup_P, iSup_W, single_P, single_W, src, sup_P, sup_W, tgt, ext, ext_iff, uniq_terminal, D₁_P, D₁_W, Dā‚‚_P, Dā‚‚_W, Dā‚ƒ_P, Dā‚ƒ_W, Dā‚„_P, Dā‚„_W, aux, eq_id_of_Dā‚‚_W, final_functor, functorMap_comp, functorMap_comp_assoc, functorMap_id, functor_map, functor_obj, instFiniteSubtypePSingle, isCardinalFiltered, isCardinalFiltered_aux, exists_directed
44
Total62

CategoryTheory.IsCardinalFiltered

Theorems

NameKindAssumesProvesValidatesDepends On
exists_cardinal_directed šŸ“–mathematical—CategoryTheory.Functor.Final
Preorder.smallCategory
PartialOrder.toPreorder
—CategoryTheory.isFiltered_of_isCardinalFiltered
CategoryTheory.instIsCardinalFilteredToTypeOrd
exists_cardinal_directed.aux
CategoryTheory.isCardinalFiltered_prod
Order.le_succ
Cardinal.noMaxOrder
Cardinal.IsRegular.aleph0_le
Fact.out
not_isMax
Order.max_of_succ_le
CategoryTheory.leOfHom
CategoryTheory.Functor.final_comp
CategoryTheory.IsFiltered.final_fst

CategoryTheory.IsCardinalFiltered.exists_cardinal_directed

Definitions

NameCategoryTheorems
Diagram šŸ“–CompData—
DiagramWithUniqueTerminal šŸ“–CompData
5 mathmath: functorMap_id, functor_obj, final_functor, isCardinalFiltered, functor_map
D₁ šŸ“–CompOp
2 mathmath: D₁_W, D₁_P
Dā‚‚ šŸ“–CompOp
2 mathmath: Dā‚‚_W, Dā‚‚_P
Dā‚ƒ šŸ“–CompOp
2 mathmath: Dā‚ƒ_P, Dā‚ƒ_W
Dā‚„ šŸ“–CompOp
2 mathmath: Dā‚„_P, Dā‚„_W
functor šŸ“–CompOp
3 mathmath: functor_obj, final_functor, functor_map
functorMap šŸ“–CompOp
4 mathmath: functorMap_comp, functorMap_id, functorMap_comp_assoc, functor_map
instPartialOrderDiagramWithUniqueTerminal šŸ“–CompOp
5 mathmath: functorMap_id, functor_obj, final_functor, isCardinalFiltered, functor_map

Theorems

NameKindAssumesProvesValidatesDepends On
D₁_P šŸ“–mathematicalHasCardinalLTDiagram.P
D₁
DiagramWithUniqueTerminal.toDiagram
——
D₁_W šŸ“–mathematicalHasCardinalLTDiagram.W
D₁
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
DiagramWithUniqueTerminal.toDiagram
CategoryTheory.MorphismProperty.ofHoms
CategoryTheory.CategoryStruct.id
——
Dā‚‚_P šŸ“–mathematicalHasCardinalLTDiagram.P
Dā‚‚
DiagramWithUniqueTerminal.toDiagram
—D₁_P
Dā‚‚_W šŸ“–mathematicalHasCardinalLTDiagram.W
Dā‚‚
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
DiagramWithUniqueTerminal.toDiagram
CategoryTheory.MorphismProperty.ofHoms
CategoryTheory.CategoryStruct.id
Diagram.P
CategoryTheory.CategoryStruct.comp
DiagramWithUniqueTerminal.top
Diagram.IsTerminal.lift
DiagramWithUniqueTerminal.isTerminal
——
Dā‚ƒ_P šŸ“–mathematical—Diagram.P
Dā‚ƒ
DiagramWithUniqueTerminal.toDiagram
——
Dā‚ƒ_W šŸ“–mathematical—Diagram.W
Dā‚ƒ
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
DiagramWithUniqueTerminal.toDiagram
CategoryTheory.MorphismProperty.ofHoms
CategoryTheory.CategoryStruct.id
——
Dā‚„_P šŸ“–mathematical—Diagram.P
Dā‚„
DiagramWithUniqueTerminal.toDiagram
—Dā‚ƒ_P
Dā‚„_W šŸ“–mathematical—Diagram.W
Dā‚„
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
DiagramWithUniqueTerminal.toDiagram
CategoryTheory.MorphismProperty.ofHoms
CategoryTheory.CategoryStruct.id
Diagram.P
——
aux šŸ“–mathematicalIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.Final
Preorder.smallCategory
PartialOrder.toPreorder
—isCardinalFiltered
final_functor
eq_id_of_Dā‚‚_W šŸ“–mathematicalHasCardinalLT
Diagram.P
DiagramWithUniqueTerminal.toDiagram
Diagram.W
Dā‚‚
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—Diagram.src
CategoryTheory.MorphismProperty.ofHoms_iff
final_functor šŸ“–mathematicalIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.Final
DiagramWithUniqueTerminal
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrderDiagramWithUniqueTerminal
functor
—isCardinalFiltered
CategoryTheory.isFiltered_of_isCardinalFiltered
CategoryTheory.Functor.final_iff_of_isFiltered
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.Category.assoc
CategoryTheory.IsFiltered.coeq_condition
IsEmpty.false
Diagram.tgt
Diagram.src
CategoryTheory.MorphismProperty.ofHoms_iff
Diagram.IsTerminal.comm_assoc
CategoryTheory.Category.comp_id
Diagram.IsTerminal.uniq
Diagram.IsTerminal.prop
LE.le.trans
le_sup_left
Diagram.IsTerminal.lift_self
CategoryTheory.Category.id_comp
functorMap_comp šŸ“–mathematicalDiagramWithUniqueTerminal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderDiagramWithUniqueTerminal
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DiagramWithUniqueTerminal.top
functorMap
LE.le.trans
—Diagram.IsTerminal.comm
Diagram.IsTerminal.hlift
functorMap_comp_assoc šŸ“–mathematicalDiagramWithUniqueTerminal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderDiagramWithUniqueTerminal
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DiagramWithUniqueTerminal.top
functorMap
LE.le.trans
—LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functorMap_comp
functorMap_id šŸ“–mathematical—functorMap
le_refl
DiagramWithUniqueTerminal
PartialOrder.toPreorder
instPartialOrderDiagramWithUniqueTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
DiagramWithUniqueTerminal.top
—le_refl
Diagram.IsTerminal.lift_self
functor_map šŸ“–mathematical—CategoryTheory.Functor.map
DiagramWithUniqueTerminal
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrderDiagramWithUniqueTerminal
functor
functorMap
——
functor_obj šŸ“–mathematical—CategoryTheory.Functor.obj
DiagramWithUniqueTerminal
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrderDiagramWithUniqueTerminal
functor
DiagramWithUniqueTerminal.top
——
instFiniteSubtypePSingle šŸ“–mathematical—Finite
Diagram.P
Diagram.single
—Finite.of_surjective
Finite.of_fintype
isCardinalFiltered šŸ“–mathematicalIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsCardinalFiltered
DiagramWithUniqueTerminal
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrderDiagramWithUniqueTerminal
—CategoryTheory.isCardinalFiltered_preorder
isCardinalFiltered_aux
hasCardinalLT_iff_cardinal_mk_lt
IsEmpty.false
Diagram.tgt
Dā‚‚_P
eq_id_of_Dā‚‚_W
Diagram.src
Diagram.IsTerminal.comm_assoc
CategoryTheory.Category.comp_id
Diagram.IsTerminal.prop
le_trans
le_refl
le_iSup
le_sup_left
isCardinalFiltered_aux šŸ“–mathematicalIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasCardinalLT
DiagramWithUniqueTerminal.top
CategoryTheory.CategoryStruct.comp
Diagram.IsTerminal.lift
DiagramWithUniqueTerminal.toDiagram
DiagramWithUniqueTerminal.isTerminal
—Cardinal.IsRegular.aleph0_le
Fact.out
hasCardinalLT_prod
hasCardinalLT_sigma
Diagram.hP
HasCardinalLT.of_injective
hasCardinalLT_of_finite
Finite.of_fintype
hasCardinalLT_iff_of_equiv
hasCardinalLT_sum_iff
IsEmpty.false
CategoryTheory.Category.assoc
CategoryTheory.Limits.Multicofork.condition

CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram

Definitions

NameCategoryTheorems
P šŸ“–CompOp
16 mathmath: CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.DiagramWithUniqueTerminal.ext_iff, hP, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚ƒ_P, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚„_P, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₁_P, src, ext_iff, tgt, IsTerminal.prop, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.instFiniteSubtypePSingle, single_P, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚„_W, iSup_P, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚‚_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚‚_P, sup_P
iSup šŸ“–CompOp
2 mathmath: iSup_W, iSup_P
single šŸ“–CompOp
3 mathmath: CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.instFiniteSubtypePSingle, single_P, single_W
sup šŸ“–CompOp
2 mathmath: sup_W, sup_P

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”W
P
———
ext_iff šŸ“–mathematical—W
P
—ext
hP šŸ“–mathematical—CategoryTheory.ObjectProperty.HasCardinalLT
P
——
hW šŸ“–mathematical—CategoryTheory.MorphismProperty.HasCardinalLT
W
——
iSup_P šŸ“–mathematicalHasCardinalLTP
iSup
iSup
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.supSet
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
——
iSup_W šŸ“–mathematicalHasCardinalLTW
iSup
iSup
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
——
single_P šŸ“–mathematical—P
single
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
——
single_W šŸ“–mathematical—W
single
CategoryTheory.MorphismProperty.ofHoms
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
src šŸ“–mathematicalWP——
sup_P šŸ“–mathematical—P
sup
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
——
sup_W šŸ“–mathematical—W
sup
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
——
tgt šŸ“–mathematicalWP——

CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.IsTerminal

Definitions

NameCategoryTheorems
ofExistsUnique šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comm šŸ“–mathematicalCategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.WCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
lift
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.tgt
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.src
——
comm_assoc šŸ“–mathematicalCategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.WCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
lift
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.tgt
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.src
—CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.tgt
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.src
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
hlift šŸ“–mathematicalCategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.PCategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.W
lift
——
instSubsingleton šŸ“–mathematical—CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.IsTerminal—uniq
hlift
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.tgt
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.src
lift_self šŸ“–mathematical—lift
prop
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—uniq
prop
prop_id
prop šŸ“–mathematical—CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.P—CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.src
prop_id
prop_id šŸ“–mathematical—CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.W
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
uniq šŸ“–mathematicalCategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.P
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.W
lift——

CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.DiagramWithUniqueTerminal

Definitions

NameCategoryTheorems
isTerminal šŸ“–CompOp
2 mathmath: CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.isCardinalFiltered_aux, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚‚_W
single šŸ“–CompOp—
toDiagram šŸ“–CompOp
10 mathmath: CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₁_W, ext_iff, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚ƒ_P, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚„_P, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₁_P, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.isCardinalFiltered_aux, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚ƒ_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚„_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚‚_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚‚_P
top šŸ“–CompOp
7 mathmath: CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.functorMap_comp, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.functorMap_id, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.functor_obj, uniq_terminal, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.functorMap_comp_assoc, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.isCardinalFiltered_aux, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚‚_W

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.W
toDiagram
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.P
——CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.IsTerminal.instSubsingleton
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.ext
CategoryTheory.MorphismProperty.ext
ext_iff šŸ“–mathematical—CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.W
toDiagram
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.P
—ext
uniq_terminal šŸ“–mathematical—top——

CategoryTheory.IsFiltered

Theorems

NameKindAssumesProvesValidatesDepends On
exists_directed šŸ“–mathematical—CategoryTheory.Functor.Final
Preorder.smallCategory
PartialOrder.toPreorder
—Cardinal.fact_isRegular_aleph0
CategoryTheory.isCardinalFiltered_aleph0_iff
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed
isDirectedOrder
nonempty

---

← Back to Index