Directed
š Source: Mathlib/CategoryTheory/Presentable/Directed.lean
Statistics
| Metric | Count |
|---|---|
DefinitionsDiagram, ofExistsUnique, P, iSup, single, sup, DiagramWithUniqueTerminal, isTerminal, single, toDiagram, top, Dā, Dā, Dā, Dā, functor, functorMap, instPartialOrderDiagramWithUniqueTerminal | 18 |
Theoremsexists_cardinal_directed, comm, comm_assoc, hlift, instSubsingleton, lift_self, prop, prop_id, uniq, ext, ext_iff, hP, hW, iSup_P, iSup_W, single_P, single_W, src, sup_P, sup_W, tgt, ext, ext_iff, uniq_terminal, Dā_P, Dā_W, Dā_P, Dā_W, Dā_P, Dā_W, Dā_P, Dā_W, aux, eq_id_of_Dā_W, final_functor, functorMap_comp, functorMap_comp_assoc, functorMap_id, functor_map, functor_obj, instFiniteSubtypePSingle, isCardinalFiltered, isCardinalFiltered_aux, exists_directed | 44 |
| Total | 62 |
CategoryTheory.IsCardinalFiltered
Theorems
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed
Definitions
| Name | Category | Theorems |
|---|---|---|
Diagram š | CompData | ā |
DiagramWithUniqueTerminal š | CompData | |
Dā š | CompOp | |
Dā š | CompOp | |
Dā š | CompOp | |
Dā š | CompOp | |
functor š | CompOp | |
functorMap š | CompOp | |
instPartialOrderDiagramWithUniqueTerminal š | CompOp |
Theorems
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram
Definitions
Theorems
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.IsTerminal
Definitions
| Name | Category | Theorems |
|---|---|---|
ofExistsUnique š | CompOp | ā |
Theorems
CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.DiagramWithUniqueTerminal
Definitions
Theorems
CategoryTheory.IsFiltered
Theorems
---