Documentation Verification Report

Finite

📁 Source: Mathlib/CategoryTheory/Presentable/Finite.lean

Statistics

MetricCount
DefinitionsIsFinitelyAccessible, IsFinitelyPresentable, isFinitelyPresentable, isFinitelyPresentable
4
TheoremsIsFinitelyAccessible_iff_preservesFilteredColimitsOfSize, isFinitelyAccessible_iff_preservesFilteredColimits, HasCardinalFilteredColimits_iff_hasFilteredColimits, HasCardinalFilteredColimits_iff_hasFilteredColimitsOfSize, exists_eq_of_isColimit, exists_hom_of_isColimit, exists_hom_of_isColimit_under, isFinitelyPresentable_eq_isCardinalPresentable, instIsFinitelyPresentableObjFullSubcategoryIsFinitelyPresentableι, instPreservesFilteredColimitsOfSizeObjOppositeFunctorTypeCoyonedaOpOfIsFinitelyPresentable, isFinitelyPresentable_iff_preservesFilteredColimits, isFinitelyPresentable_iff_preservesFilteredColimitsOfSize
12
Total16

CategoryTheory

Definitions

NameCategoryTheorems
IsFinitelyPresentable 📖MathDef
7 mathmath: instIsFinitelyPresentableObjFullSubcategoryIsFinitelyPresentableι, SSet.Finite.instIsFinitelyPresentableObjSimplexCategoryStdSimplex, isFinitelyPresentable_iff_preservesFilteredColimitsOfSize, CommRingCat.isFinitelyPresentable_under, SSet.Finite.instIsFinitelyPresentable, isFinitelyPresentable, isFinitelyPresentable_iff_preservesFilteredColimits

Theorems

NameKindAssumesProvesValidatesDepends On
HasCardinalFilteredColimits_iff_hasFilteredColimits 📖mathematicalHasCardinalFilteredColimits
Cardinal.aleph0
Cardinal.fact_isRegular_aleph0
Limits.HasFilteredColimits
HasCardinalFilteredColimits_iff_hasFilteredColimitsOfSize
HasCardinalFilteredColimits_iff_hasFilteredColimitsOfSize 📖mathematicalHasCardinalFilteredColimits
Cardinal.aleph0
Cardinal.fact_isRegular_aleph0
Limits.HasFilteredColimitsOfSize
Cardinal.fact_isRegular_aleph0
instIsFinitelyPresentableObjFullSubcategoryIsFinitelyPresentableι 📖mathematicalIsFinitelyPresentable
Functor.obj
ObjectProperty.FullSubcategory
ObjectProperty.isFinitelyPresentable
ObjectProperty.FullSubcategory.category
ObjectProperty.ι
ObjectProperty.FullSubcategory.property
instPreservesFilteredColimitsOfSizeObjOppositeFunctorTypeCoyonedaOpOfIsFinitelyPresentable 📖mathematicalLimits.PreservesFilteredColimitsOfSize
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
isFinitelyPresentable_iff_preservesFilteredColimitsOfSize
isFinitelyPresentable_iff_preservesFilteredColimits 📖mathematicalIsFinitelyPresentable
Limits.PreservesFilteredColimits
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
Functor.IsFinitelyAccessible_iff_preservesFilteredColimitsOfSize
isFinitelyPresentable_iff_preservesFilteredColimitsOfSize 📖mathematicalIsFinitelyPresentable
Limits.PreservesFilteredColimitsOfSize
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
Functor.IsFinitelyAccessible_iff_preservesFilteredColimitsOfSize

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsFinitelyAccessible 📖MathDef
2 mathmath: isFinitelyAccessible_iff_preservesFilteredColimits, IsFinitelyAccessible_iff_preservesFilteredColimitsOfSize

Theorems

NameKindAssumesProvesValidatesDepends On
IsFinitelyAccessible_iff_preservesFilteredColimitsOfSize 📖mathematicalIsFinitelyAccessible
CategoryTheory.Limits.PreservesFilteredColimitsOfSize
Cardinal.fact_isRegular_aleph0
isFinitelyAccessible_iff_preservesFilteredColimits 📖mathematicalIsFinitelyAccessible
CategoryTheory.Limits.PreservesFilteredColimits
IsFinitelyAccessible_iff_preservesFilteredColimitsOfSize

CategoryTheory.IsFinitelyPresentable

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_of_isColimit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.mapCategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.instPreservesFilteredColimitsOfSizeObjOppositeFunctorTypeCoyonedaOpOfIsFinitelyPresentable
exists_hom_of_isColimit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.instPreservesFilteredColimitsOfSizeObjOppositeFunctorTypeCoyonedaOpOfIsFinitelyPresentable
exists_hom_of_isColimit_under 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.IsFiltered.nonempty
exists_hom_of_isColimit
CategoryTheory.Under.w

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
isFinitelyPresentable 📖CompOp
1 mathmath: CommRingCat.isFinitelyPresentable_hom

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
isFinitelyPresentable 📖CompOp
5 mathmath: CategoryTheory.instIsFinitelyPresentableObjFullSubcategoryIsFinitelyPresentableι, CategoryTheory.IsFinitelyAccessibleCategory.instIsFilteredCostructuredArrowFullSubcategoryIsFinitelyPresentableι, CategoryTheory.IsFinitelyAccessibleCategory.instIsDenseFullSubcategoryIsFinitelyPresentableι, isFinitelyPresentable_eq_isCardinalPresentable, CategoryTheory.IsFinitelyAccessibleCategory.instEssentiallySmallIsFinitelyPresentable

Theorems

NameKindAssumesProvesValidatesDepends On
isFinitelyPresentable_eq_isCardinalPresentable 📖mathematicalisFinitelyPresentable
CategoryTheory.isCardinalPresentable
Cardinal.aleph0
Cardinal.fact_isRegular_aleph0

---

← Back to Index