Documentation Verification Report

OrthogonalReflection

📁 Source: Mathlib/CategoryTheory/Presentable/OrthogonalReflection.lean

Statistics

MetricCount
DefinitionsD₁, l, obj₁, obj₂, t, ιLeft, ιRight, D₂, multispanIndex, multispanShape, corepresentableBy, fromStep, iteration, iterationObjSuccIso, reflection, reflectionObj, step, succ, succStruct, toStep, toSucc, transfiniteCompositionOfShapeReflection
22
TheoremsisCardinalAccessible_ι_isLocal, isClosedUnderColimitsOfShape_isLocal, isLocallyPresentable_isLocal, isRightAdjoint_ι_isLocal, hasCoproductsOfShape, ιLeft_comp_l, ιLeft_comp_l_assoc, ιLeft_comp_t, ιLeft_comp_t_assoc, ι_comp_t, ι_comp_t_assoc, condition, condition_assoc, hasColimitsOfShape, multispanIndex_fst, multispanIndex_left, multispanIndex_right, multispanIndex_snd, multispanShape_L, multispanShape_R, multispanShape_fst, multispanShape_snd, instSmallD₁OfIsSmallOfLocallySmall, instSmallD₂, instSmallLMultispanShape, isIso_toSucc_iff, isLocal_isLocal_reflection, isLocal_isLocal_toSucc, isLocal_reflectionObj, isRightAdjoint_ι, iteration_map_succ, iteration_map_succ_assoc, iteration_map_succ_injectivity, iteration_map_succ_surjectivity, leftBousfieldW_isLocal_toSucc, toSucc_injectivity, toSucc_surjectivity
37
Total59

CategoryTheory.MorphismProperty

Theorems

NameKindAssumesProvesValidatesDepends On
isCardinalAccessible_ι_isLocal 📖mathematicalCategoryTheory.IsCardinalPresentableCategoryTheory.Functor.IsCardinalAccessible
CategoryTheory.ObjectProperty.FullSubcategory
isLocal
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
isClosedUnderColimitsOfShape_isLocal
CategoryTheory.essentiallySmall_of_small_of_locallySmall
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.locallySmall_of_univLE
CategoryTheory.preservesColimitOfShape_of_createsColimitsOfShape_and_hasColimitsOfShape
CategoryTheory.HasCardinalFilteredColimits.hasColimitsOfShape
isClosedUnderColimitsOfShape_isLocal 📖mathematicalCategoryTheory.IsCardinalPresentableCategoryTheory.ObjectProperty.IsClosedUnderColimitsOfShape
isLocal
CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit
CategoryTheory.IsCardinalPresentable.exists_eq_of_isColimit
CategoryTheory.Category.assoc
CategoryTheory.Limits.ColimitPresentation.w
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.ObjectProperty.ColimitOfShape.prop_diag_obj
isLocallyPresentable_isLocal 📖mathematicalCategoryTheory.IsCardinalPresentableCategoryTheory.IsCardinalLocallyPresentable
CategoryTheory.ObjectProperty.FullSubcategory
isLocal
CategoryTheory.ObjectProperty.FullSubcategory.category
isRightAdjoint_ι_isLocal
CategoryTheory.HasCardinalFilteredGenerator.toLocallySmall
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
CategoryTheory.instIsCardinalAccessibleCategoryOfIsCardinalLocallyPresentable
CategoryTheory.IsCardinalLocallyPresentable.toHasColimitsOfSize
isCardinalAccessible_ι_isLocal
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredColimits
CategoryTheory.Adjunction.isCardinalLocallyPresentable
CategoryTheory.ObjectProperty.full_ι
CategoryTheory.ObjectProperty.faithful_ι
isRightAdjoint_ι_isLocal 📖mathematicalCategoryTheory.IsCardinalPresentableCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.ObjectProperty.FullSubcategory
isLocal
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
Cardinal.IsRegular.ne_zero
Fact.out
CategoryTheory.OrthogonalReflection.D₁.hasCoproductsOfShape
CategoryTheory.OrthogonalReflection.D₂.hasColimitsOfShape
CategoryTheory.OrthogonalReflection.isRightAdjoint_ι
CategoryTheory.Limits.hasPushouts_of_hasWidePushouts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.instHasIterationOfShapeOfHasColimitsOfSize

CategoryTheory.OrthogonalReflection

Definitions

NameCategoryTheorems
D₁ 📖CompOp
8 mathmath: D₁.ιLeft_comp_l, D₁.ι_comp_t_assoc, D₁.ιLeft_comp_t, D₁.ιLeft_comp_l_assoc, D₁.ιLeft_comp_t_assoc, D₁.ι_comp_t, D₁.hasCoproductsOfShape, instSmallD₁OfIsSmallOfLocallySmall
D₂ 📖CompOp
2 mathmath: instSmallD₂, D₂.multispanShape_L
corepresentableBy 📖CompOp
fromStep 📖CompOp
3 mathmath: D₂.condition, D₂.condition_assoc, iteration_map_succ_assoc
iteration 📖CompOp
3 mathmath: iteration_map_succ, iteration_map_succ_assoc, iteration_map_succ_surjectivity
iterationObjSuccIso 📖CompOp
2 mathmath: iteration_map_succ, iteration_map_succ_assoc
reflection 📖CompOp
1 mathmath: isLocal_isLocal_reflection
reflectionObj 📖CompOp
2 mathmath: isLocal_isLocal_reflection, isLocal_reflectionObj
step 📖CompOp
5 mathmath: D₂.multispanIndex_right, iteration_map_succ_assoc, D₂.multispanIndex_left, D₂.multispanIndex_fst, D₂.multispanIndex_snd
succ 📖CompOp
9 mathmath: toSucc_injectivity, iteration_map_succ, toSucc_surjectivity, leftBousfieldW_isLocal_toSucc, D₂.condition, isLocal_isLocal_toSucc, D₂.condition_assoc, iteration_map_succ_assoc, isIso_toSucc_iff
succStruct 📖CompOp
toStep 📖CompOp
1 mathmath: iteration_map_succ_assoc
toSucc 📖CompOp
6 mathmath: toSucc_injectivity, iteration_map_succ, toSucc_surjectivity, leftBousfieldW_isLocal_toSucc, isLocal_isLocal_toSucc, isIso_toSucc_iff
transfiniteCompositionOfShapeReflection 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instSmallD₁OfIsSmallOfLocallySmall 📖mathematicalSmall
D₁
small_sigma
CategoryTheory.MorphismProperty.IsSmall.small_toSet
CategoryTheory.instSmallHomOfLocallySmall
instSmallD₂ 📖mathematicalSmall
D₂
small_sigma
CategoryTheory.MorphismProperty.IsSmall.small_toSet
small_subtype
small_prod
CategoryTheory.instSmallHomOfLocallySmall
instSmallLMultispanShape 📖mathematicalSmall
CategoryTheory.Limits.MultispanShape.L
D₂.multispanShape
instSmallD₂
isIso_toSucc_iff 📖mathematicalCategoryTheory.IsIso
succ
toSucc
CategoryTheory.MorphismProperty.isLocal
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Category.assoc
D₂.condition
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Limits.pushout.condition_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Limits.colimit.ι_desc
isLocal_isLocal_toSucc
CategoryTheory.Limits.Multicoequalizer.hom_ext
CategoryTheory.Limits.pushout.hom_ext
CategoryTheory.Limits.Sigma.hom_ext
D₁.ι_comp_t_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.pushout.condition
isLocal_isLocal_reflection 📖mathematicalCategoryTheory.Limits.HasCoproduct
D₁
D₁.obj₁
D₁.obj₂
CategoryTheory.Limits.HasMulticoequalizer
D₂.multispanShape
D₂.multispanIndex
CategoryTheory.ObjectProperty.isLocal
CategoryTheory.MorphismProperty.isLocal
reflectionObj
reflection
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le
wellFoundedLT_toType
CategoryTheory.ObjectProperty.instIsStableUnderTransfiniteCompositionOfShapeIsLocal
isLocal_isLocal_toSucc 📖mathematicalCategoryTheory.ObjectProperty.isLocal
CategoryTheory.MorphismProperty.isLocal
succ
toSucc
CategoryTheory.Limits.Multicoequalizer.hom_ext
CategoryTheory.Limits.pushout.hom_ext
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.pushout.condition_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.Sigma.ι_map_assoc
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.colimit.ι_desc_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isLocal_reflectionObj 📖mathematicalCategoryTheory.Limits.HasCoproduct
D₁
D₁.obj₁
D₁.obj₂
CategoryTheory.Limits.HasMulticoequalizer
D₂.multispanShape
D₂.multispanIndex
CategoryTheory.IsCardinalPresentable
CategoryTheory.MorphismProperty.isLocal
reflectionObj
wellFoundedLT_toType
CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit
CategoryTheory.essentiallySmall_of_small_of_locallySmall
UnivLE.small
UnivLE.self
CategoryTheory.locallySmall_of_thin
Preorder.subsingleton_hom
CategoryTheory.instIsCardinalFilteredToTypeOrd
le_max_left
le_max_right
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
CategoryTheory.IsCardinalPresentable.exists_eq_of_isColimit'
Order.le_succ
iteration_map_succ_injectivity
CategoryTheory.Functor.map_comp
Mathlib.Tactic.Reassoc.eq_whisker'
iteration_map_succ_surjectivity
isRightAdjoint_ι 📖mathematicalCategoryTheory.Limits.HasCoproduct
D₁
D₁.obj₁
D₁.obj₂
CategoryTheory.Limits.HasMulticoequalizer
D₂.multispanShape
D₂.multispanIndex
CategoryTheory.IsCardinalPresentable
CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.MorphismProperty.isLocal
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.Functor.isRightAdjoint_iff_leftAdjointObjIsDefined_eq_top
CategoryTheory.Functor.CorepresentableBy.isCorepresentable
isLocal_reflectionObj
iteration_map_succ 📖mathematicalCategoryTheory.Limits.HasCoproduct
D₁
D₁.obj₁
D₁.obj₂
CategoryTheory.Limits.HasMulticoequalizer
D₂.multispanShape
D₂.multispanIndex
CategoryTheory.Functor.map
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
iteration
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.homOfLE
Order.le_succ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
succ
toSucc
CategoryTheory.Iso.inv
iterationObjSuccIso
CategoryTheory.SmallObject.SuccStruct.iterationFunctor_map_succ
iteration_map_succ_assoc 📖mathematicalCategoryTheory.Limits.HasCoproduct
D₁
D₁.obj₁
D₁.obj₂
CategoryTheory.Limits.HasMulticoequalizer
D₂.multispanShape
D₂.multispanIndex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
iteration
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
step
toStep
succ
fromStep
CategoryTheory.Iso.inv
iterationObjSuccIso
Order.le_succ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iteration_map_succ
iteration_map_succ_injectivity 📖mathematicalCategoryTheory.Limits.HasCoproduct
D₁
D₁.obj₁
D₁.obj₂
CategoryTheory.Limits.HasMulticoequalizer
D₂.multispanShape
D₂.multispanIndex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
iteration
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
Order.le_succ
iteration_map_succ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toSucc_injectivity
iteration_map_succ_surjectivity 📖mathematicalCategoryTheory.Limits.HasCoproduct
D₁
D₁.obj₁
D₁.obj₂
CategoryTheory.Limits.HasMulticoequalizer
D₂.multispanShape
D₂.multispanIndex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
iteration
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
Order.le_succ
iteration_map_succ
toSucc_surjectivity
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftBousfieldW_isLocal_toSucc 📖mathematicalCategoryTheory.ObjectProperty.isLocal
CategoryTheory.MorphismProperty.isLocal
succ
toSucc
isLocal_isLocal_toSucc
toSucc_injectivity 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
succ
toSucc
CategoryTheory.Category.assoc
D₂.condition
Mathlib.Tactic.Reassoc.eq_whisker'
toSucc_surjectivity 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
succ
toSucc
CategoryTheory.Limits.pushout.condition_assoc
CategoryTheory.Limits.colimit.ι_desc_assoc

CategoryTheory.OrthogonalReflection.D₁

Definitions

NameCategoryTheorems
l 📖CompOp
2 mathmath: ιLeft_comp_l, ιLeft_comp_l_assoc
obj₁ 📖CompOp
6 mathmath: ιLeft_comp_l, ι_comp_t_assoc, ιLeft_comp_t, ιLeft_comp_l_assoc, ιLeft_comp_t_assoc, ι_comp_t
obj₂ 📖CompOp
4 mathmath: ι_comp_t_assoc, ιLeft_comp_t, ιLeft_comp_t_assoc, ι_comp_t
t 📖CompOp
4 mathmath: ι_comp_t_assoc, ιLeft_comp_t, ιLeft_comp_t_assoc, ι_comp_t
ιLeft 📖CompOp
4 mathmath: ιLeft_comp_l, ιLeft_comp_t, ιLeft_comp_l_assoc, ιLeft_comp_t_assoc
ιRight 📖CompOp
2 mathmath: ιLeft_comp_t, ιLeft_comp_t_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
hasCoproductsOfShape 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.Limits.HasCoproductsOfShape
CategoryTheory.OrthogonalReflection.D₁
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.OrthogonalReflection.instSmallD₁OfIsSmallOfLocallySmall
ιLeft_comp_l 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
CategoryTheory.OrthogonalReflection.D₁
obj₁
ιLeft
l
CategoryTheory.Limits.Sigma.ι_desc
ιLeft_comp_l_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
CategoryTheory.OrthogonalReflection.D₁
obj₁
ιLeft
l
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιLeft_comp_l
ιLeft_comp_t 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
CategoryTheory.OrthogonalReflection.D₁
obj₁
obj₂
ιLeft
t
ιRight
CategoryTheory.Limits.ι_colimMap
ιLeft_comp_t_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
CategoryTheory.OrthogonalReflection.D₁
obj₁
ιLeft
obj₂
t
ιRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιLeft_comp_t
ι_comp_t 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj₁
CategoryTheory.Limits.sigmaObj
CategoryTheory.OrthogonalReflection.D₁
obj₂
CategoryTheory.Limits.Sigma.ι
t
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
Set
Set.instMembership
CategoryTheory.MorphismProperty.toSet
Set.Elem
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.ι_colimMap
ι_comp_t_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj₁
CategoryTheory.Limits.sigmaObj
CategoryTheory.OrthogonalReflection.D₁
CategoryTheory.Limits.Sigma.ι
obj₂
t
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
Set
Set.instMembership
CategoryTheory.MorphismProperty.toSet
Set.Elem
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_comp_t

CategoryTheory.OrthogonalReflection.D₂

Definitions

NameCategoryTheorems
multispanIndex 📖CompOp
4 mathmath: multispanIndex_right, multispanIndex_left, multispanIndex_fst, multispanIndex_snd
multispanShape 📖CompOp
10 mathmath: multispanShape_R, multispanIndex_right, multispanShape_fst, multispanShape_snd, multispanIndex_left, hasColimitsOfShape, multispanShape_L, CategoryTheory.OrthogonalReflection.instSmallLMultispanShape, multispanIndex_fst, multispanIndex_snd

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.OrthogonalReflection.step
CategoryTheory.OrthogonalReflection.succ
CategoryTheory.OrthogonalReflection.fromStep
CategoryTheory.Limits.Multicoequalizer.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.OrthogonalReflection.step
CategoryTheory.OrthogonalReflection.succ
CategoryTheory.OrthogonalReflection.fromStep
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
hasColimitsOfShape 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Limits.WalkingMultispan
multispanShape
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.essentiallySmall_of_small_of_locallySmall
CategoryTheory.Limits.WalkingMultispan.instSmallOfLOfR
CategoryTheory.OrthogonalReflection.instSmallLMultispanShape
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.WalkingMultispan.instLocallySmall
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
multispanIndex_fst 📖mathematicalCategoryTheory.Limits.MultispanIndex.fst
multispanShape
multispanIndex
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
Set
Set.instMembership
CategoryTheory.MorphismProperty.toSet
Set.Elem
CategoryTheory.OrthogonalReflection.step
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
multispanIndex_left 📖mathematicalCategoryTheory.Limits.MultispanIndex.left
multispanShape
multispanIndex
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
Set
Set.instMembership
CategoryTheory.MorphismProperty.toSet
Set.Elem
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.OrthogonalReflection.step
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
multispanIndex_right 📖mathematicalCategoryTheory.Limits.MultispanIndex.right
multispanShape
multispanIndex
CategoryTheory.OrthogonalReflection.step
multispanIndex_snd 📖mathematicalCategoryTheory.Limits.MultispanIndex.snd
multispanShape
multispanIndex
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
Set
Set.instMembership
CategoryTheory.MorphismProperty.toSet
Set.Elem
CategoryTheory.OrthogonalReflection.step
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
multispanShape_L 📖mathematicalCategoryTheory.Limits.MultispanShape.L
multispanShape
CategoryTheory.OrthogonalReflection.D₂
multispanShape_R 📖mathematicalCategoryTheory.Limits.MultispanShape.R
multispanShape
multispanShape_fst 📖mathematicalCategoryTheory.Limits.MultispanShape.fst
multispanShape
multispanShape_snd 📖mathematicalCategoryTheory.Limits.MultispanShape.snd
multispanShape

---

← Back to Index