Documentation Verification Report

Presheaf

📁 Source: Mathlib/CategoryTheory/Presentable/Presheaf.lean

Statistics

MetricCount
Definitions0
TheoremsinstIsCardinalLocallyPresentableFunctorOppositeOfHasPullbacks, instIsCardinalPresentableFunctorOppositeFreeYonedaOfHasColimitsOfSize, instIsCardinalPresentableFunctorOppositeTypeObjUliftYonedaOfHasColimitsOfSize, instIsLocallyPresentableFunctorOppositeOfHasPullbacks, isStrongGenerator
5
Total5

CategoryTheory.Presheaf

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCardinalLocallyPresentableFunctorOppositeOfHasPullbacks 📖mathematicalCategoryTheory.IsCardinalLocallyPresentable
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.IsCardinalLocallyPresentable.iff_exists_isStrongGenerator
CategoryTheory.IsCardinalLocallyPresentable.toHasColimitsOfSize
CategoryTheory.HasCardinalFilteredGenerator.toLocallySmall
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
CategoryTheory.instIsCardinalAccessibleCategoryOfIsCardinalLocallyPresentable
CategoryTheory.Limits.functorCategoryHasColimitsOfSize
CategoryTheory.instLocallySmallFunctor
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.ObjectProperty.instSmallOfObjOfSmall
small_prod
UnivLE.small
UnivLE.self
isStrongGenerator
CategoryTheory.isCardinalPresentable_iff
instIsCardinalPresentableFunctorOppositeFreeYonedaOfHasColimitsOfSize
instIsCardinalPresentableFunctorOppositeFreeYonedaOfHasColimitsOfSize 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.IsCardinalPresentable
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
freeYoneda
CategoryTheory.types_ext
ULift.ext
freeYonedaHomEquiv_comp
CategoryTheory.preservesColimitsOfShape_of_isCardinalPresentable
CategoryTheory.Limits.preservesColimitsOfShape_of_natIso
CategoryTheory.Limits.comp_preservesColimitsOfShape
CategoryTheory.Limits.evaluation_preservesColimitsOfShape
CategoryTheory.HasCardinalFilteredColimits.hasColimitsOfShape
CategoryTheory.instHasCardinalFilteredColimitsOfHasColimitsOfSize
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Limits.Types.instPreservesColimitsOfSizeUliftFunctor
instIsCardinalPresentableFunctorOppositeTypeObjUliftYonedaOfHasColimitsOfSize 📖mathematicalCategoryTheory.IsCardinalPresentable
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
CategoryTheory.Limits.preservesColimitsOfShape_of_natIso
CategoryTheory.Limits.comp_preservesColimitsOfShape
CategoryTheory.Limits.evaluation_preservesColimitsOfShape
CategoryTheory.HasCardinalFilteredColimits.hasColimitsOfShape
CategoryTheory.instHasCardinalFilteredColimitsOfHasColimitsOfSize
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Limits.Types.instPreservesColimitsOfSizeUliftFunctor
instIsLocallyPresentableFunctorOppositeOfHasPullbacks 📖mathematicalCategoryTheory.IsLocallyPresentable
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.IsLocallyPresentable.exists_cardinal
instIsCardinalLocallyPresentableFunctorOppositeOfHasPullbacks
isStrongGenerator 📖mathematicalCategoryTheory.ObjectProperty.IsStrongGenerator
CategoryTheory.Limits.HasCoproducts
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
freeYoneda
CategoryTheory.ObjectProperty.isStrongGenerator_iff
isSeparating
CategoryTheory.ObjectProperty.ofObj_subtypeVal
CategoryTheory.NatTrans.isIso_iff_isIso_app
CategoryTheory.instMonoAppOfFunctor
Equiv.surjective
CategoryTheory.ObjectProperty.ofObj_apply
freeYonedaHomEquiv_comp

---

← Back to Index