Documentation Verification Report

StrongGenerator

📁 Source: Mathlib/CategoryTheory/Presentable/StrongGenerator.lean

Statistics

MetricCount
Definitions0
Theoremsof_isDense, of_isDense_ι, iff_exists_isStrongGenerator, of_le, colimitsCardinalClosure_eq_isCardinalPresentable, isDense_colimitsCardinalClosure_ι, colimitsCardinalClosure_le_isCardinalPresentable, isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι, isFiltered_costructuredArrow_colimitsCardinalClosure_ι
9
Total9

CategoryTheory.IsCardinalFilteredGenerator

Theorems

NameKindAssumesProvesValidatesDepends On
of_isDense 📖mathematicalCategoryTheory.IsCardinalPresentable
CategoryTheory.Functor.obj
CategoryTheory.IsCardinalFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator
CategoryTheory.ObjectProperty.map
Top.top
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
CategoryTheory.isCardinalPresentable_of_iso
CategoryTheory.CostructuredArrow.essentiallySmall
CategoryTheory.IsCardinalFiltered.of_equivalence
of_isDense_ι 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.isCardinalPresentable
CategoryTheory.IsCardinalFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.IsCardinalFilteredGeneratorCategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.isoClosure_iff
CategoryTheory.ObjectProperty.FullSubcategory.property
CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.congr_simp
CategoryTheory.ObjectProperty.ι_map_top
of_isDense
CategoryTheory.ObjectProperty.instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall_1

CategoryTheory.IsCardinalLocallyPresentable

Theorems

NameKindAssumesProvesValidatesDepends On
iff_exists_isStrongGenerator 📖mathematicalCategoryTheory.IsCardinalLocallyPresentable
CategoryTheory.ObjectProperty.IsStrongGenerator
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.isCardinalPresentable
CategoryTheory.HasCardinalFilteredGenerator.exists_small_generator
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
CategoryTheory.instIsCardinalAccessibleCategoryOfIsCardinalLocallyPresentable
CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.isStrongGenerator
CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.le_isCardinalPresentable
CategoryTheory.ObjectProperty.IsStrongGenerator.isDense_colimitsCardinalClosure_ι
CategoryTheory.ObjectProperty.instEssentiallySmallColimitsCardinalClosureOfLocallySmall
CategoryTheory.ObjectProperty.instEssentiallySmallOfSmall
CategoryTheory.IsCardinalFilteredGenerator.of_isDense_ι
CategoryTheory.ObjectProperty.colimitsCardinalClosure_le_isCardinalPresentable
CategoryTheory.ObjectProperty.isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι
of_le 📖mathematicalCardinal
Cardinal.instLE
CategoryTheory.IsCardinalLocallyPresentableiff_exists_isStrongGenerator
toHasColimitsOfSize
CategoryTheory.HasCardinalFilteredGenerator.toLocallySmall
CategoryTheory.IsCardinalAccessibleCategory.toHasCardinalFilteredGenerator
CategoryTheory.instIsCardinalAccessibleCategoryOfIsCardinalLocallyPresentable
LE.le.trans
CategoryTheory.isCardinalPresentable_monotone

CategoryTheory.IsStrongGenerator

Theorems

NameKindAssumesProvesValidatesDepends On
colimitsCardinalClosure_eq_isCardinalPresentable 📖mathematicalCategoryTheory.ObjectProperty.IsStrongGenerator
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.isCardinalPresentable
CategoryTheory.ObjectProperty.colimitsCardinalClosurele_antisymm
CategoryTheory.ObjectProperty.IsStrongGenerator.isDense_colimitsCardinalClosure_ι
CategoryTheory.ObjectProperty.retractClosure_eq_self
CategoryTheory.ObjectProperty.isStableUnderRetracts_colimitsCardinalClosure
CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit
CategoryTheory.isCardinalPresentable_iff
CategoryTheory.CostructuredArrow.essentiallySmall
CategoryTheory.ObjectProperty.instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall_1
CategoryTheory.ObjectProperty.instEssentiallySmallColimitsCardinalClosureOfLocallySmall
CategoryTheory.ObjectProperty.instEssentiallySmallOfSmall
CategoryTheory.ObjectProperty.isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι
CategoryTheory.ObjectProperty.FullSubcategory.property
CategoryTheory.ObjectProperty.colimitsCardinalClosure_le_isCardinalPresentable

CategoryTheory.ObjectProperty

Theorems

NameKindAssumesProvesValidatesDepends On
colimitsCardinalClosure_le_isCardinalPresentable 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.isCardinalPresentable
colimitsCardinalClosurecolimitsCardinalClosure_le
CategoryTheory.instIsClosedUnderIsomorphismsIsCardinalPresentable
CategoryTheory.isClosedUnderColimitsOfShape_isCardinalPresentable
CategoryTheory.Limits.Types.hasLimitsOfShape
Opposite.small
UnivLE.small
UnivLE.self
isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι 📖mathematicalCategoryTheory.IsCardinalFiltered
CategoryTheory.CostructuredArrow
FullSubcategory
colimitsCardinalClosure
FullSubcategory.category
ι
CategoryTheory.instCategoryCostructuredArrow
isClosedUnderColimitsOfShape_colimitsCardinalClosure
CategoryTheory.CostructuredArrow.hasColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_closedUnderColimits
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.preservesColimit_comp_of_createsColimit
CategoryTheory.preservesColimitOfShape_of_createsColimitsOfShape_and_hasColimitsOfShape
CategoryTheory.preservesColimit_of_createsColimit_and_hasColimit
isFiltered_costructuredArrow_colimitsCardinalClosure_ι 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.CostructuredArrow
FullSubcategory
colimitsCardinalClosure
FullSubcategory.category
ι
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.isFiltered_of_isCardinalFiltered
isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι

CategoryTheory.ObjectProperty.IsStrongGenerator

Theorems

NameKindAssumesProvesValidatesDepends On
isDense_colimitsCardinalClosure_ι 📖mathematicalCategoryTheory.ObjectProperty.IsStrongGenerator
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.isCardinalPresentable
CategoryTheory.Functor.IsDense
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.colimitsCardinalClosure
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.CostructuredArrow.essentiallySmall
CategoryTheory.ObjectProperty.instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall_1
CategoryTheory.ObjectProperty.instEssentiallySmallColimitsCardinalClosureOfLocallySmall
CategoryTheory.ObjectProperty.instEssentiallySmallOfSmall
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.ObjectProperty.IsSeparating.mono_iff
isSeparating
CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit
CategoryTheory.ObjectProperty.isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.ObjectProperty.isFiltered_costructuredArrow_colimitsCardinalClosure_ι
CategoryTheory.Category.assoc
CategoryTheory.Limits.colimit.w
CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_colimitsCardinalClosure
HasCardinalLT.of_le
CategoryTheory.Arrow.finite
Cardinal.IsRegular.aleph0_le
Fact.out
CategoryTheory.Limits.hasCoequalizers_of_hasWideCoequalizers
CategoryTheory.ObjectProperty.prop_colimit
CategoryTheory.ObjectProperty.le_colimitsCardinalClosure
CategoryTheory.ObjectProperty.FullSubcategory.property
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.coequalizer.desc.congr_simp
CategoryTheory.Limits.coequalizer.condition_assoc
isIso_of_mono

---

← Back to Index