Documentation Verification Report

Quotient

📁 Source: Mathlib/CategoryTheory/Quotient.lean

Statistics

MetricCount
DefinitionshomRel, CompClosure, IsStableUnderPostcomp, IsStableUnderPrecomp, Quotient, CompClosure, as, category, comp, equiv, functor, groupoid, instInhabitedHom, instUnique, inv, isLift, natIsoLift, natTransLift, instInhabitedQuotient, HomRel, instInhabitedHomRel
21
TheoremscompLeft, compRight, equivalence, toIsStableUnderPostcomp, toIsStableUnderPrecomp, congruence_homRel, homRel_iff, of, comp_right, comp_left, compClosure_eq_self, compClosure_iff_self, instIsStableUnderPostcompCompClosure, instIsStableUnderPrecompCompClosure, of, congruence, compClosure_eq_self, compClosure_iff_self, comp_left, comp_mk, comp_natTransLift, comp_natTransLift_assoc, comp_right, essSurj_functor, ext, ext_iff, faithful_whiskeringLeft_functor, full_functor, full_whiskeringLeft_functor, functor_homRel_eq_compClosure_eqvGen, functor_map_eq_iff, induction, instSubsingletonHom, inv_mk, isLift_hom, isLift_inv, lift_map_functor_map, lift_obj_functor_obj, lift_spec, lift_unique, lift_unique', natIsoLift_hom, natIsoLift_inv, natTransLift_app, natTransLift_id, natTrans_ext, sound
47
Total68

CategoryTheory

Definitions

NameCategoryTheorems
Quotient 📖CompData
34 mathmath: Quotient.natIsoLift_inv, Quotient.Linear.smul_eq, Quotient.functor_additive, Quotient.comp_natTransLift_assoc, Quotient.lift.isLift_hom, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, Quotient.linear_functor, Quotient.full_functor, Quotient.LiftCommShift.iso_hom_app, Quotient.liftCommShift_compatibility, Quotient.natTransLift_id, Quotient.lift_map_functor_map, quotientPathsTo_obj, Quotient.instSubsingletonHom, Quotient.functor_homRel_eq_compClosure_eqvGen, MorphismProperty.eq_inverseImage_quotientFunctor, Quotient.functor_map_eq_iff, Quotient.natIsoLift_hom, Quotient.lift_obj_functor_obj, Quotient.essSurj_functor, Quotient.full_whiskeringLeft_functor, Quotient.faithful_whiskeringLeft_functor, toQuotientPaths_obj_as, Quotient.liftCommShift_commShiftIso, Quotient.lift.isLift_inv, Quotient.LiftCommShift.iso_inv_app, Quiver.FreeGroupoid.of_eq, Quotient.lift_spec, Quotient.sound, toQuotientPaths_map, Quotient.natTransLift_app, quotientPathsTo_map, MorphismProperty.quotient_iff, Quotient.comp_natTransLift
instInhabitedQuotient 📖CompOp

CategoryTheory.Congruence

Theorems

NameKindAssumesProvesValidatesDepends On
compLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HomRel.IsStableUnderPrecomp.comp_left
compRight 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HomRel.IsStableUnderPostcomp.comp_right
equivalence 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
toIsStableUnderPostcomp 📖mathematicalCategoryTheory.HomRel.IsStableUnderPostcomp
toIsStableUnderPrecomp 📖mathematicalCategoryTheory.HomRel.IsStableUnderPrecomp

CategoryTheory.Functor

Definitions

NameCategoryTheorems
homRel 📖CompOp
3 mathmath: homRel_iff, CategoryTheory.Quotient.functor_homRel_eq_compClosure_eqvGen, congruence_homRel

Theorems

NameKindAssumesProvesValidatesDepends On
congruence_homRel 📖mathematicalCategoryTheory.Congruence
homRel
map_comp
homRel_iff 📖mathematicalhomRel
map

CategoryTheory.HomRel

Definitions

NameCategoryTheorems
CompClosure 📖CompData
21 mathmath: HomotopyCategory.quotient_map_out_comp_out, CategoryTheory.Quotient.CompClosure.of, HomotopyCategory.quot_mk_eq_quotient_map, CategoryTheory.Localization.Construction.lift_map, CategoryTheory.Quotient.functor_homRel_eq_compClosure_eqvGen, compClosure_iff_self, CategoryTheory.Quotient.compClosure.congruence, Quiver.FreeGroupoid.congr_comp_reverse, instIsStableUnderPostcompCompClosure, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, CategoryTheory.Quotient.compClosure_iff_self, CategoryTheory.Quotient.inv_mk, compClosure_eq_self, CompClosure.of, CategoryTheory.Quotient.compClosure_eq_self, instIsStableUnderPrecompCompClosure, HomotopyCategory.quotient_map_out, Quiver.FreeGroupoid.congr_reverse_comp, CategoryTheory.toQuotientPaths_map, CategoryTheory.quotientPathsTo_map, CategoryTheory.Quotient.comp_mk
IsStableUnderPostcomp 📖CompData
5 mathmath: instIsStableUnderPostcompCompClosure, HomotopicalAlgebra.BifibrantObject.instIsStableUnderPostcompHomRel, CategoryTheory.Congruence.toIsStableUnderPostcomp, HomotopicalAlgebra.CofibrantObject.instIsStableUnderPostcompHomRel, HomotopicalAlgebra.FibrantObject.instIsStableUnderPostcompHomRel
IsStableUnderPrecomp 📖CompData
5 mathmath: HomotopicalAlgebra.FibrantObject.instIsStableUnderPrecompHomRel, CategoryTheory.Congruence.toIsStableUnderPrecomp, HomotopicalAlgebra.CofibrantObject.instIsStableUnderPrecompHomRel, HomotopicalAlgebra.BifibrantObject.instIsStableUnderPrecompHomRel, instIsStableUnderPrecompCompClosure

Theorems

NameKindAssumesProvesValidatesDepends On
compClosure_eq_self 📖mathematicalCompClosure
compClosure_iff_self 📖mathematicalCompClosureIsStableUnderPrecomp.comp_left
IsStableUnderPostcomp.comp_right
CompClosure.of
instIsStableUnderPostcompCompClosure 📖mathematicalIsStableUnderPostcomp
CompClosure
CategoryTheory.Category.assoc
instIsStableUnderPrecompCompClosure 📖mathematicalIsStableUnderPrecomp
CompClosure
CategoryTheory.Category.assoc

CategoryTheory.HomRel.CompClosure

Theorems

NameKindAssumesProvesValidatesDepends On
of 📖mathematicalCategoryTheory.HomRel.CompClosureCategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

CategoryTheory.HomRel.IsStableUnderPostcomp

Theorems

NameKindAssumesProvesValidatesDepends On
comp_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct

CategoryTheory.HomRel.IsStableUnderPrecomp

Theorems

NameKindAssumesProvesValidatesDepends On
comp_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct

CategoryTheory.Quotient

Definitions

NameCategoryTheorems
CompClosure 📖CompOp
as 📖CompOp
19 mathmath: HomotopyCategory.quotient_map_out_comp_out, CategoryTheory.Localization.Construction.lift_obj, CategoryTheory.NatTrans.mapHomotopyCategory_app, HomotopyCategory.quot_mk_eq_quotient_map, CategoryTheory.quotientPathsTo_obj, CategoryTheory.Localization.Construction.lift_map, CategoryTheory.FreeGroupoid.eq_mk, ext_iff, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, inv_mk, HomotopyCategory.quotient_obj_as, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_obj, CategoryTheory.Functor.mapHomotopyCategory_obj, CategoryTheory.toQuotientPaths_obj_as, CategoryTheory.Localization.Construction.objEquiv_symm_apply, HomotopyCategory.quotient_map_out, CategoryTheory.toQuotientPaths_map, CategoryTheory.quotientPathsTo_map, comp_mk
category 📖CompOp
93 mathmath: HomotopicalAlgebra.FibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, HomotopicalAlgebra.BifibrantObject.HoCat.ιCofibrantObject_obj, natIsoLift_inv, HomotopicalAlgebra.CofibrantObject.instIsLocalizedEquivalenceHoCatWeakEquivalencesToHoCatLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.toHoCat_map_eq_iff, HomotopicalAlgebra.FibrantObject.instIsLocalizedEquivalenceHoCatWeakEquivalencesToHoCatLocalizerMorphism, Linear.smul_eq, functor_additive, HomotopicalAlgebra.FibrantObject.instIsLocalizationCompHoCatToHoCatWeakEquivalences, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_apply, HomotopicalAlgebra.CofibrantObject.instFaithfulHoCatHoCatιCofibrantObject, comp_natTransLift_assoc, lift.isLift_hom, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_symm_apply, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac', HomotopicalAlgebra.FibrantObject.toHoCat_map_eq_iff, linear_functor, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_apply, HomotopicalAlgebra.FibrantObject.weakEquivalence_toHoCat_map_iff, full_functor, HomotopicalAlgebra.BifibrantObject.toHoCat_map_eq, HomotopicalAlgebra.BifibrantObject.instIsIsoHoCatMapToHoCatOfWeakEquivalence, LiftCommShift.iso_hom_app, liftCommShift_compatibility, HomotopicalAlgebra.CofibrantObject.toHoCat_obj_surjective, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution'_obj, HomotopicalAlgebra.FibrantObject.instWeakEquivalenceHoCatAppιCompResolutionNatTrans, natTransLift_id, HomotopicalAlgebra.FibrantObject.instFullHoCatToHoCat, HomotopicalAlgebra.BifibrantObject.instIsLocalizationHoCatToHoCatWeakEquivalences, lift_map_functor_map, CategoryTheory.quotientPathsTo_obj, instSubsingletonHom, HomotopicalAlgebra.CofibrantObject.instFullHoCatToHoCat, functor_homRel_eq_compClosure_eqvGen, HomotopicalAlgebra.BifibrantObject.toHoCat_obj_surjective, HomotopicalAlgebra.FibrantObject.toHoCat_map_eq, HomotopicalAlgebra.CofibrantObject.instIsLocalizationCompHoCatToHoCatWeakEquivalences, CategoryTheory.MorphismProperty.eq_inverseImage_quotientFunctor, functor_map_eq_iff, HomotopicalAlgebra.FibrantObject.HoCat.resolutionObj_hom_ext, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_symm_apply, HomotopicalAlgebra.CofibrantObject.HoCat.resolutionObj_hom_ext, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorHoCatAdjCounit', HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorHoCatCounitHoCatAdj, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorResolutionCompToLocalizationNatTrans, HomotopicalAlgebra.BifibrantObject.HoCat.ιFibrantObject_obj, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution_map, natIsoLift_hom, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounitIso_inv_app, HomotopicalAlgebra.CofibrantObject.HoCat.adjUnit_app, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution_obj, HomotopicalAlgebra.BifibrantObject.toHoCat_map_eq_iff, HomotopicalAlgebra.FibrantObject.HoCat.ιCompResolutionNatTrans_app, lift_obj_functor_obj, HomotopicalAlgebra.FibrantObject.toHoCat_obj_surjective, essSurj_functor, HomotopicalAlgebra.CofibrantObject.instIsIsoHoCatAppAdjCounit', full_whiskeringLeft_functor, faithful_whiskeringLeft_functor, CategoryTheory.toQuotientPaths_obj_as, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppιCompResolutionNatTrans, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppAdjUnit, liftCommShift_commShiftIso, HomotopicalAlgebra.FibrantObject.instIsIsoFunctorResolutionCompToLocalizationNatTrans, HomotopicalAlgebra.CofibrantObject.instFullHoCatHoCatιCofibrantObject, lift.isLift_inv, CategoryTheory.PreOneHypercover.Homotopy.map_eq_map, LiftCommShift.iso_inv_app, HomotopicalAlgebra.CofibrantObject.instIsLocalizationHoCatHoCatBifibrantResolutionWeakEquivalences, HomotopicalAlgebra.CofibrantObject.HoCat.ιCompResolutionNatTrans_app, Quiver.FreeGroupoid.of_eq, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution'_map, CategoryTheory.GrothendieckTopology.HOneHypercover.isCofiltered_of_hasPullbacks, lift_spec, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppUnitHoCatAdj, HomotopicalAlgebra.CofibrantObject.weakEquivalence_toHoCat_map_iff, HomotopicalAlgebra.CofibrantObject.HoCat.localizerMorphismResolution_functor, sound, HomotopicalAlgebra.BifibrantObject.HoCat.ιCofibrantObject_map_toHoCat_map, HomotopicalAlgebra.FibrantObject.HoCat.localizerMorphismResolution_functor, CategoryTheory.toQuotientPaths_map, natTransLift_app, CategoryTheory.quotientPathsTo_map, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounit'_app, HomotopicalAlgebra.BifibrantObject.instFullHoCatToHoCat, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac'_assoc, HomotopicalAlgebra.CofibrantObject.toHoCat_map_eq, CategoryTheory.MorphismProperty.quotient_iff, HomotopicalAlgebra.BifibrantObject.HoCat.ιFibrantObject_map_toHoCat_map, comp_natTransLift
comp 📖CompOp
1 mathmath: comp_mk
equiv 📖CompOp
functor 📖CompOp
28 mathmath: natIsoLift_inv, Linear.smul_eq, functor_additive, comp_natTransLift_assoc, lift.isLift_hom, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, linear_functor, full_functor, LiftCommShift.iso_hom_app, liftCommShift_compatibility, natTransLift_id, lift_map_functor_map, functor_homRel_eq_compClosure_eqvGen, CategoryTheory.MorphismProperty.eq_inverseImage_quotientFunctor, functor_map_eq_iff, natIsoLift_hom, lift_obj_functor_obj, essSurj_functor, full_whiskeringLeft_functor, faithful_whiskeringLeft_functor, lift.isLift_inv, LiftCommShift.iso_inv_app, Quiver.FreeGroupoid.of_eq, lift_spec, sound, natTransLift_app, CategoryTheory.MorphismProperty.quotient_iff, comp_natTransLift
groupoid 📖CompOp
instInhabitedHom 📖CompOp
instUnique 📖CompOp
inv 📖CompOp
1 mathmath: inv_mk
natIsoLift 📖CompOp
2 mathmath: natIsoLift_inv, natIsoLift_hom
natTransLift 📖CompOp
6 mathmath: natIsoLift_inv, comp_natTransLift_assoc, natTransLift_id, natIsoLift_hom, natTransLift_app, comp_natTransLift

Theorems

NameKindAssumesProvesValidatesDepends On
compClosure_eq_self 📖mathematicalCategoryTheory.HomRel.CompClosureCategoryTheory.HomRel.compClosure_eq_self
compClosure_iff_self 📖mathematicalCategoryTheory.HomRel.CompClosureCategoryTheory.HomRel.compClosure_iff_self
comp_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HomRel.IsStableUnderPrecomp.comp_left
comp_mk 📖mathematicalcomp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
as
CategoryTheory.HomRel.CompClosure
CategoryTheory.CategoryStruct.comp
comp_natTransLift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Quotient
category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
natTransLift
CategoryTheory.Functor.comp
functor
comp_natTransLift_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Quotient
category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
natTransLift
CategoryTheory.Functor.comp
functor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_natTransLift
comp_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HomRel.IsStableUnderPostcomp.comp_right
essSurj_functor 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Quotient
category
functor
ext 📖as
ext_iff 📖mathematicalasext
faithful_whiskeringLeft_functor 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Functor
CategoryTheory.Quotient
category
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
functor
natTrans_ext
full_functor 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Quotient
category
functor
Quot.out_eq
full_whiskeringLeft_functor 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Functor
CategoryTheory.Quotient
category
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
functor
functor_homRel_eq_compClosure_eqvGen 📖mathematicalCategoryTheory.Functor.homRel
CategoryTheory.Quotient
category
functor
Relation.EqvGen
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HomRel.CompClosure
Quot.eq
functor_map_eq_iff 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Quotient
category
functor
Equivalence.quot_mk_eq_iff
CategoryTheory.HomRel.compClosure_eq_self
CategoryTheory.Congruence.toIsStableUnderPrecomp
CategoryTheory.Congruence.toIsStableUnderPostcomp
CategoryTheory.Congruence.equivalence
induction 📖CategoryTheory.Functor.obj
CategoryTheory.Quotient
category
functor
CategoryTheory.Functor.map
instSubsingletonHom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Quotient
category
Function.Surjective.subsingleton
CategoryTheory.Functor.Full.map_surjective
full_functor
inv_mk 📖mathematicalinv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
as
CategoryTheory.HomRel.CompClosure
CategoryTheory.Groupoid.inv
lift_map_functor_map 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.Quotient
category
lift
CategoryTheory.Functor.obj
functor
lift_obj_functor_obj 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.Functor.obj
CategoryTheory.Quotient
category
lift
functor
lift_spec 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.Functor.comp
CategoryTheory.Quotient
category
functor
lift
lift_unique 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Quotient
category
functor
liftCategoryTheory.Functor.hext
lift_unique' 📖CategoryTheory.Functor.comp
CategoryTheory.Quotient
category
functor
sound
lift_unique
natIsoLift_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Quotient
category
CategoryTheory.Functor.category
natIsoLift
natTransLift
CategoryTheory.Functor.comp
functor
natIsoLift_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Quotient
category
CategoryTheory.Functor.category
natIsoLift
natTransLift
CategoryTheory.Functor.comp
functor
natTransLift_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Quotient
category
natTransLift
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.comp
natTransLift_id 📖mathematicalnatTransLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Quotient
category
functor
natTrans_ext 📖CategoryTheory.Functor.whiskerLeft
CategoryTheory.Quotient
category
functor
CategoryTheory.NatTrans.ext
CategoryTheory.NatTrans.congr_app
sound 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Quotient
category
functor
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

CategoryTheory.Quotient.CompClosure

Theorems

NameKindAssumesProvesValidatesDepends On
of 📖mathematicalCategoryTheory.HomRel.CompClosureCategoryTheory.HomRel.CompClosure.of

CategoryTheory.Quotient.compClosure

Theorems

NameKindAssumesProvesValidatesDepends On
congruence 📖mathematicalCategoryTheory.Congruence
Relation.EqvGen
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HomRel.CompClosure
CategoryTheory.Quotient.functor_homRel_eq_compClosure_eqvGen
CategoryTheory.Functor.congruence_homRel

CategoryTheory.Quotient.lift

Definitions

NameCategoryTheorems
isLift 📖CompOp
3 mathmath: isLift_hom, CategoryTheory.Quotient.liftCommShift_compatibility, isLift_inv

Theorems

NameKindAssumesProvesValidatesDepends On
isLift_hom 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Quotient
CategoryTheory.Quotient.category
CategoryTheory.Quotient.functor
CategoryTheory.Quotient.lift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
isLift_inv 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Quotient
CategoryTheory.Quotient.category
CategoryTheory.Quotient.functor
CategoryTheory.Quotient.lift
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj

(root)

Definitions

NameCategoryTheorems
HomRel 📖CompOp
instInhabitedHomRel 📖CompOp

---

← Back to Index