Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/RegularCategory/Basic.lean

Statistics

MetricCount
DefinitionsfrobeniusMorphism, frobeniusStrongEpiMonoFactorisation, regularEpiOfExtremalEpi, strongEpiMonoFactorisation
4
Theoremsexists_inf_pullback_eq_exists_inf, frobeniusMorphism_isPullback, frobeniusStrongEpiMonoFactorisation_I, frobeniusStrongEpiMonoFactorisation_e, frobeniusStrongEpiMonoFactorisation_m, hasCoequalizer_of_isKernelPair, hasStrongEpiMonoFactorisations, instHasCoequalizerFstSnd, instIsRegularEpiEStrongEpiMonoFactorisation, instIsRegularEpiFrobeniusMorphism, instMonoDesc, isRegularEpi_of_extremalEpi, regularEpiIsStableUnderBaseChange, toHasFiniteLimits, instIsRegularEpiFst, instIsRegularEpiSnd, instPreregular
17
Total21

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsRegularEpiFst πŸ“–mathematicalβ€”IsRegularEpi
Limits.pullback
Limits.pullback.fst
β€”MorphismProperty.IsStableUnderBaseChange.of_isPullback
Regular.regularEpiIsStableUnderBaseChange
IsPullback.flip
IsPullback.of_hasPullback
instIsRegularEpiSnd πŸ“–mathematicalβ€”IsRegularEpi
Limits.pullback
Limits.pullback.snd
β€”MorphismProperty.IsStableUnderBaseChange.of_isPullback
Regular.regularEpiIsStableUnderBaseChange
IsPullback.of_hasPullback
instPreregular πŸ“–mathematicalβ€”Preregularβ€”Limits.hasLimitOfHasLimitsOfShape
Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
Regular.toHasFiniteLimits
instEffectiveEpiOfIsRegularEpi
instIsRegularEpiSnd
isRegularEpi_of_EffectiveEpi
Limits.pullback.condition

CategoryTheory.Regular

Definitions

NameCategoryTheorems
frobeniusMorphism πŸ“–CompOp
3 mathmath: instIsRegularEpiFrobeniusMorphism, frobeniusStrongEpiMonoFactorisation_e, frobeniusMorphism_isPullback
frobeniusStrongEpiMonoFactorisation πŸ“–CompOp
3 mathmath: frobeniusStrongEpiMonoFactorisation_I, frobeniusStrongEpiMonoFactorisation_e, frobeniusStrongEpiMonoFactorisation_m
regularEpiOfExtremalEpi πŸ“–CompOpβ€”
strongEpiMonoFactorisation πŸ“–CompOp
1 mathmath: instIsRegularEpiEStrongEpiMonoFactorisation

Theorems

NameKindAssumesProvesValidatesDepends On
exists_inf_pullback_eq_exists_inf πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.exists
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
hasStrongEpiMonoFactorisations
SemilatticeInf.toMin
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Subobject.pullback
β€”CategoryTheory.Subobject.eq_of_comm
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
hasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Limits.IsImage.isoExt_hom_m
frobeniusMorphism_isPullback πŸ“–mathematicalβ€”CategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
SemilatticeInf.toMin
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Subobject.pullback
CategoryTheory.Subobject.exists
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
hasStrongEpiMonoFactorisations
frobeniusMorphism
CategoryTheory.Subobject.ofLE
CategoryTheory.Subobject.inf_le_left
CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Subobject.arrow
CategoryTheory.Limits.ImageFactorisation.F
CategoryTheory.Subobject.imageFactorisation
β€”CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
hasStrongEpiMonoFactorisations
CategoryTheory.Subobject.inf_le_left
CategoryTheory.IsPullback.of_right
CategoryTheory.IsPullback.lift_snd
CategoryTheory.IsPullback.flip
CategoryTheory.Subobject.inf_isPullback
CategoryTheory.IsPullback.lift_fst
CategoryTheory.Limits.MonoFactorisation.fac
CategoryTheory.IsPullback.paste_horiz_iff
CategoryTheory.Subobject.isPullback
CategoryTheory.Subobject.ofLE_arrow
frobeniusStrongEpiMonoFactorisation_I πŸ“–mathematicalβ€”CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
SemilatticeInf.toMin
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Subobject.pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Subobject.arrow
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
frobeniusStrongEpiMonoFactorisation
CategoryTheory.Subobject.exists
β€”CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
frobeniusStrongEpiMonoFactorisation_e πŸ“–mathematicalβ€”CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
SemilatticeInf.toMin
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Subobject.pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Subobject.arrow
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
frobeniusStrongEpiMonoFactorisation
frobeniusMorphism
β€”CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
hasStrongEpiMonoFactorisations
frobeniusStrongEpiMonoFactorisation_m πŸ“–mathematicalβ€”CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
SemilatticeInf.toMin
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Subobject.pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Subobject.arrow
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
frobeniusStrongEpiMonoFactorisation
CategoryTheory.Subobject.exists
β€”CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
hasCoequalizer_of_isKernelPair πŸ“–mathematicalCategoryTheory.IsKernelPairCategoryTheory.Limits.HasCoequalizerβ€”β€”
hasStrongEpiMonoFactorisations πŸ“–mathematicalβ€”CategoryTheory.Limits.HasStrongEpiMonoFactorisationsβ€”β€”
instHasCoequalizerFstSnd πŸ“–mathematicalβ€”CategoryTheory.Limits.HasCoequalizer
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
β€”hasCoequalizer_of_isKernelPair
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.IsKernelPair.of_hasPullback
instIsRegularEpiEStrongEpiMonoFactorisation πŸ“–mathematicalβ€”CategoryTheory.IsRegularEpi
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
strongEpiMonoFactorisation
CategoryTheory.Limits.MonoFactorisation.e
β€”instHasCoequalizerFstSnd
CategoryTheory.instIsRegularEpiΟ€
instIsRegularEpiFrobeniusMorphism πŸ“–mathematicalβ€”CategoryTheory.IsRegularEpi
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
SemilatticeInf.toMin
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Subobject.pullback
CategoryTheory.Subobject.exists
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
hasStrongEpiMonoFactorisations
frobeniusMorphism
β€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange.of_isPullback
regularEpiIsStableUnderBaseChange
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
hasStrongEpiMonoFactorisations
CategoryTheory.Subobject.inf_le_left
CategoryTheory.IsPullback.flip
frobeniusMorphism_isPullback
CategoryTheory.Limits.strongEpi_of_strongEpiMonoFactorisation
isRegularEpi_of_extremalEpi
CategoryTheory.instExtremalEpiOfStrongEpi
instMonoDesc πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Limits.coequalizer
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
instHasCoequalizerFstSnd
CategoryTheory.Limits.coequalizer.desc
CategoryTheory.Limits.pullback.condition
β€”CategoryTheory.IsKernelPair.mono_of_eq_fst_snd
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
toHasFiniteLimits
instHasCoequalizerFstSnd
CategoryTheory.Limits.pullback.condition
CategoryTheory.IsKernelPair.of_hasPullback
CategoryTheory.Category.assoc
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Limits.limit.lift_Ο€
CategoryTheory.IsPullback.of_right
CategoryTheory.IsPullback.of_bot
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Limits.limit.lift_Ο€_assoc
CategoryTheory.IsPullback.paste_horiz
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.of_isPullback
regularEpiIsStableUnderBaseChange
CategoryTheory.IsPullback.flip
CategoryTheory.instIsRegularEpiFst
CategoryTheory.instIsRegularEpiΟ€
CategoryTheory.cancel_epi
CategoryTheory.epi_comp
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfEffectiveEpiFamily
CategoryTheory.instEffectiveEpiFamily
CategoryTheory.instEffectiveEpiOfIsRegularEpi
CategoryTheory.instIsRegularEpiSnd
CategoryTheory.Limits.coequalizer.condition
isRegularEpi_of_extremalEpi πŸ“–mathematicalβ€”CategoryTheory.IsRegularEpiβ€”β€”
regularEpiIsStableUnderBaseChange πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange
CategoryTheory.MorphismProperty.regularEpi
β€”β€”
toHasFiniteLimits πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteLimitsβ€”β€”

---

← Back to Index