Documentation Verification Report

Retract

📁 Source: Mathlib/CategoryTheory/Retract.lean

Statistics

MetricCount
Definitionsretract, retractArrowApp, Retract, i, map, ofIso, op, r, refl, splitEpi, splitMono, trans, RetractArrow, left, map, op, right, unop
18
Theoremsretract_i, retract_r, retractArrowApp_i, retractArrowApp_r, instIsSplitEpiR, instIsSplitMonoI, map_i, map_r, op_i, op_r, refl_i, refl_r, retract, retract_assoc, splitEpi_section_, splitMono_retraction, trans_i, trans_r, i_w, i_w_assoc, instIsSplitEpiLeftRArrow, instIsSplitEpiRightRArrow, instIsSplitMonoLeftIArrow, instIsSplitMonoRightIArrow, left_i, left_r, map_i_left, map_i_right, map_r_left, map_r_right, op_i_left, op_i_right, op_r_left, op_r_right, r_w, r_w_assoc, retract_left, retract_left_assoc, retract_right, retract_right_assoc, right_i, right_r, unop_i_left, unop_i_right, unop_r_left, unop_r_right
46
Total64

CategoryTheory

Definitions

NameCategoryTheorems
Retract 📖CompData
1 mathmath: ObjectProperty.prop_retractClosure_iff
RetractArrow 📖CompOp

CategoryTheory.Iso

Definitions

NameCategoryTheorems
retract 📖CompOp
2 mathmath: retract_r, retract_i

Theorems

NameKindAssumesProvesValidatesDepends On
retract_i 📖mathematicalCategoryTheory.Retract.i
retract
hom
retract_r 📖mathematicalCategoryTheory.Retract.r
retract
inv

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
retractArrowApp 📖CompOp
2 mathmath: retractArrowApp_r, retractArrowApp_i

Theorems

NameKindAssumesProvesValidatesDepends On
retractArrowApp_i 📖mathematicalCategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
app
retractArrowApp
CategoryTheory.Arrow.homMk
CategoryTheory.Functor.map
retractArrowApp_r 📖mathematicalCategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
app
retractArrowApp
CategoryTheory.Arrow.homMk
CategoryTheory.Functor.map

CategoryTheory.Retract

Definitions

NameCategoryTheorems
i 📖CompOp
34 mathmath: refl_i, CategoryTheory.RetractArrow.retract_left_assoc, op_i, splitEpi_section_, retract, CategoryTheory.RetractArrow.i_w, splitMono_retraction, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.Iso.retract_i, CategoryTheory.RetractArrow.right_i, CategoryTheory.RetractArrow.retract_left, CategoryTheory.RetractArrow.retract_right_assoc, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.RetractArrow.retract_right, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.Idempotents.Karoubi.retract_i_f, instIsSplitMonoI, CategoryTheory.RetractArrow.map_i_left, CategoryTheory.RetractArrow.op_r_left, CategoryTheory.RetractArrow.op_i_left, CategoryTheory.RetractArrow.map_i_right, CategoryTheory.RetractArrow.instIsSplitMonoRightIArrow, AlgebraicGeometry.instIsClosedImmersionISchemeOfSubsingletonCarrierCarrierCommRingCat, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.RetractArrow.unop_i_right, CategoryTheory.RetractArrow.left_i, retract_assoc, CategoryTheory.RetractArrow.i_w_assoc, CategoryTheory.RetractArrow.unop_r_left, CategoryTheory.RetractArrow.instIsSplitMonoLeftIArrow, map_i, op_r, CategoryTheory.NatTrans.retractArrowApp_i, trans_i
map 📖CompOp
2 mathmath: map_r, map_i
ofIso 📖CompOp
op 📖CompOp
2 mathmath: op_i, op_r
r 📖CompOp
33 mathmath: refl_r, CategoryTheory.RetractArrow.right_r, CategoryTheory.RetractArrow.retract_left_assoc, CategoryTheory.RetractArrow.left_r, op_i, splitEpi_section_, CategoryTheory.RetractArrow.r_w_assoc, retract, CategoryTheory.RetractArrow.map_r_right, splitMono_retraction, CategoryTheory.Idempotents.Karoubi.retract_r_f, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.Iso.retract_r, CategoryTheory.RetractArrow.r_w, CategoryTheory.RetractArrow.retract_left, map_r, CategoryTheory.RetractArrow.retract_right_assoc, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.RetractArrow.retract_right, CategoryTheory.RetractArrow.map_r_left, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.NatTrans.retractArrowApp_r, instIsSplitEpiR, CategoryTheory.RetractArrow.instIsSplitEpiRightRArrow, CategoryTheory.RetractArrow.op_r_left, trans_r, CategoryTheory.RetractArrow.op_i_left, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.RetractArrow.unop_i_right, retract_assoc, CategoryTheory.RetractArrow.instIsSplitEpiLeftRArrow, CategoryTheory.RetractArrow.unop_r_left, op_r
refl 📖CompOp
2 mathmath: refl_r, refl_i
splitEpi 📖CompOp
1 mathmath: splitEpi_section_
splitMono 📖CompOp
1 mathmath: splitMono_retraction
trans 📖CompOp
2 mathmath: trans_r, trans_i

Theorems

NameKindAssumesProvesValidatesDepends On
instIsSplitEpiR 📖mathematicalCategoryTheory.IsSplitEpi
r
instIsSplitMonoI 📖mathematicalCategoryTheory.IsSplitMono
i
map_i 📖mathematicali
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.map
map_r 📖mathematicalr
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.map
op_i 📖mathematicali
Opposite
CategoryTheory.Category.opposite
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
r
op_r 📖mathematicalr
Opposite
CategoryTheory.Category.opposite
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
i
refl_i 📖mathematicali
refl
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
refl_r 📖mathematicalr
refl
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
retract 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
r
CategoryTheory.CategoryStruct.id
retract_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
r
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
retract
splitEpi_section_ 📖mathematicalCategoryTheory.SplitEpi.section_
r
splitEpi
i
splitMono_retraction 📖mathematicalCategoryTheory.SplitMono.retraction
i
splitMono
r
trans_i 📖mathematicali
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
trans_r 📖mathematicalr
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct

CategoryTheory.RetractArrow

Definitions

NameCategoryTheorems
left 📖CompOp
2 mathmath: left_r, left_i
map 📖CompOp
4 mathmath: map_r_right, map_r_left, map_i_left, map_i_right
op 📖CompOp
4 mathmath: op_r_right, op_i_right, op_r_left, op_i_left
right 📖CompOp
2 mathmath: right_r, right_i
unop 📖CompOp
4 mathmath: unop_r_right, unop_i_left, unop_i_right, unop_r_left

Theorems

NameKindAssumesProvesValidatesDepends On
i_w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.w
i_w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.CommaMorphism.right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
i_w
instIsSplitEpiLeftRArrow 📖mathematicalCategoryTheory.IsSplitEpi
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
instIsSplitEpiRightRArrow 📖mathematicalCategoryTheory.IsSplitEpi
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
instIsSplitMonoLeftIArrow 📖mathematicalCategoryTheory.IsSplitMono
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
instIsSplitMonoRightIArrow 📖mathematicalCategoryTheory.IsSplitMono
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
left_i 📖mathematicalCategoryTheory.Retract.i
left
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
left_r 📖mathematicalCategoryTheory.Retract.r
left
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
map_i_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.mapArrow
CategoryTheory.Retract.i
CategoryTheory.Functor.map
map
map_i_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.mapArrow
CategoryTheory.Retract.i
CategoryTheory.Functor.map
map
map_r_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.mapArrow
CategoryTheory.Retract.r
CategoryTheory.Functor.map
map
map_r_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.mapArrow
CategoryTheory.Retract.r
CategoryTheory.Functor.map
map
op_i_left 📖mathematicalCategoryTheory.CommaMorphism.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
op
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.r
op_i_right 📖mathematicalCategoryTheory.CommaMorphism.right
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
op
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.r
op_r_left 📖mathematicalCategoryTheory.CommaMorphism.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
op
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.i
op_r_right 📖mathematicalCategoryTheory.CommaMorphism.right
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
op
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.i
r_w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.w
r_w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.CommaMorphism.right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
r_w
retract_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Retract.r
CategoryTheory.CategoryStruct.id
CategoryTheory.Retract.retract
retract_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Retract.r
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
retract_left
retract_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Retract.r
CategoryTheory.CategoryStruct.id
CategoryTheory.Retract.retract
retract_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Retract.r
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
retract_right
right_i 📖mathematicalCategoryTheory.Retract.i
right
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
right_r 📖mathematicalCategoryTheory.Retract.r
right
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
unop_i_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
unop
CategoryTheory.Comma.right
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.r
unop_i_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.i
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
unop
CategoryTheory.Comma.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.r
unop_r_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
unop
CategoryTheory.Comma.right
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CommaMorphism.right
CategoryTheory.Retract.i
unop_r_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Retract.r
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
unop
CategoryTheory.Comma.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CommaMorphism.left
CategoryTheory.Retract.i

---

← Back to Index