Documentation Verification Report

Adjunction

📁 Source: Mathlib/CategoryTheory/Shift/Adjunction.lean

Statistics

MetricCount
DefinitionsCompatibilityCounit, CompatibilityUnit, iso, iso', iso, iso', leftAdjointCommShift, rightAdjointCommShift, instCommShiftFunctorRefl, instCommShiftFunctorSymm, instCommShiftFunctorTrans, instCommShiftInverseRefl, instCommShiftInverseSymm, instCommShiftInverseTrans, commShiftFunctor, commShiftInverse
16
TheoremscommShift_counit, commShift_unit, compatibilityCounit_left, compatibilityCounit_of_compatibilityUnit, compatibilityUnit_isoAdd, compatibilityUnit_isoZero, compatibilityUnit_right, compatibilityUnit_unique_left, compatibilityUnit_unique_right, instComp, instId, mk', compatibilityUnit_iso, iso_hom_app, iso_hom_app_assoc, iso_inv_app, iso_inv_app_assoc, compatibilityUnit_iso, iso_hom_app, iso_hom_app_assoc, iso_inv_app, iso_inv_app_assoc, commShiftIso_hom_app_counit_app_shift, commShiftIso_hom_app_counit_app_shift_assoc, commShiftIso_inv_app_counit_app, commShiftIso_inv_app_counit_app_assoc, commShift_of_leftAdjoint, commShift_of_rightAdjoint, leftAdjointCommShift_commShiftIso, rightAdjointCommShift_commShiftIso, shift_counit_app, shift_counit_app_assoc, shift_unit_app, shift_unit_app_assoc, unit_app_commShiftIso_hom_app, unit_app_commShiftIso_hom_app_assoc, unit_app_shift_commShiftIso_inv_app, unit_app_shift_commShiftIso_inv_app_assoc, instCommShiftHomFunctorCounitIso, instCommShiftHomFunctorUnitIso, instRefl, instSymm, instTrans, mk', mk'', commShift_of_functor, commShift_of_inverse
47
Total63

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
leftAdjointCommShift 📖CompOp
2 mathmath: leftAdjointCommShift_commShiftIso, commShift_of_rightAdjoint
rightAdjointCommShift 📖CompOp
2 mathmath: commShift_of_leftAdjoint, rightAdjointCommShift_commShiftIso

Theorems

NameKindAssumesProvesValidatesDepends On
commShiftIso_hom_app_counit_app_shift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.map
counit
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.shift_app_comm
CommShift.commShift_counit
commShiftIso_hom_app_counit_app_shift_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.map
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commShiftIso_hom_app_counit_app_shift
commShiftIso_inv_app_counit_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
counit
CategoryTheory.Functor.map
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Iso.hom_inv_id_app_assoc
commShiftIso_hom_app_counit_app_shift
commShiftIso_inv_app_counit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commShiftIso_inv_app_counit_app
commShift_of_leftAdjoint 📖mathematicalCommShift
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
rightAdjointCommShift
CommShift.mk'
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.id_comp
CategoryTheory.Functor.commShiftIso_comp_hom_app
RightAdjointCommShift.compatibilityUnit_iso
commShift_of_rightAdjoint 📖mathematicalCommShift
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
leftAdjointCommShift
CommShift.mk'
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.id_comp
CategoryTheory.Functor.commShiftIso_comp_hom_app
LeftAdjointCommShift.compatibilityUnit_iso
leftAdjointCommShift_commShiftIso 📖mathematicalCategoryTheory.Functor.CommShift.commShiftIso
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
leftAdjointCommShift
LeftAdjointCommShift.iso
rightAdjointCommShift_commShiftIso 📖mathematicalCategoryTheory.Functor.CommShift.commShiftIso
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
rightAdjointCommShift
RightAdjointCommShift.iso
shift_counit_app 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.shiftFunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.NatTrans.shift_app_comm
CommShift.commShift_counit
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id_app_assoc
shift_counit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_counit_app
shift_unit_app 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.shiftFunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.id_comp
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.NatTrans.shift_app_comm
CommShift.commShift_unit
shift_unit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_unit_app
unit_app_commShiftIso_hom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.shiftFunctor
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.map
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.shift_app_comm
CommShift.commShift_unit
unit_app_commShiftIso_hom_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_commShiftIso_hom_app
unit_app_shift_commShiftIso_inv_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
unit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
unit_app_commShiftIso_hom_app
unit_app_shift_commShiftIso_inv_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_shift_commShiftIso_inv_app

CategoryTheory.Adjunction.CommShift

Definitions

NameCategoryTheorems
CompatibilityCounit 📖MathDef
1 mathmath: compatibilityCounit_of_compatibilityUnit
CompatibilityUnit 📖MathDef
3 mathmath: CategoryTheory.Adjunction.LeftAdjointCommShift.compatibilityUnit_iso, CategoryTheory.Adjunction.RightAdjointCommShift.compatibilityUnit_iso, compatibilityUnit_isoZero

Theorems

NameKindAssumesProvesValidatesDepends On
commShift_counit 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.CommShift.id
commShift_unit 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.CommShift.id
CategoryTheory.Functor.CommShift.comp
compatibilityCounit_left 📖mathematicalCompatibilityCounitCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Adjunction.unit
CategoryTheory.Iso.inv
CategoryTheory.Adjunction.counit
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Functor.comp_map
CategoryTheory.Adjunction.left_triangle_components
CategoryTheory.Category.comp_id
compatibilityCounit_of_compatibilityUnit 📖mathematicalCompatibilityUnitCompatibilityCounitEquiv.injective
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.Adjunction.right_triangle_components
CategoryTheory.Category.id_comp
compatibilityUnit_isoAdd 📖mathematicalCompatibilityUnitAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.Functor.CommShift.isoAdd
CategoryTheory.Functor.CommShift.isoAdd_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.NatTrans.naturality
compatibilityUnit_isoZero 📖mathematicalCompatibilityUnit
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Functor.CommShift.isoZero
CategoryTheory.Functor.CommShift.isoZero_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
compatibilityUnit_right 📖mathematicalCompatibilityUnitCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Adjunction.counit
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.NatTrans.naturality
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.right_triangle_components
CategoryTheory.Functor.map_id
compatibilityUnit_unique_left 📖CompatibilityUnitCategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
compatibilityCounit_left
compatibilityCounit_of_compatibilityUnit
compatibilityUnit_unique_right 📖CompatibilityUnitCategoryTheory.Iso.symm_eq_iff
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Iso.symm_hom
compatibilityUnit_right
instComp 📖mathematicalCategoryTheory.Adjunction.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.comp
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Adjunction.comp_unit
CategoryTheory.NatTrans.CommShift.comp
commShift_unit
CategoryTheory.NatTrans.CommShift.whiskerRight
CategoryTheory.NatTrans.CommShift.of_iso_inv
CategoryTheory.NatTrans.CommShift.rightUnitor
CategoryTheory.NatTrans.CommShift.whiskerLeft
CategoryTheory.NatTrans.CommShift.associator
CategoryTheory.Adjunction.comp_counit
commShift_counit
instId 📖mathematicalCategoryTheory.Adjunction.CommShift
CategoryTheory.Functor.id
CategoryTheory.Adjunction.id
CategoryTheory.Functor.CommShift.id
CategoryTheory.NatTrans.CommShift.of_iso_inv
CategoryTheory.NatTrans.CommShift.leftUnitor
mk' 📖mathematicalCategoryTheory.Adjunction.CommShiftCategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.comp_id
compatibilityCounit_of_compatibilityUnit
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.shift_app_comm

CategoryTheory.Adjunction.LeftAdjointCommShift

Definitions

NameCategoryTheorems
iso 📖CompOp
6 mathmath: iso_hom_app_assoc, iso_inv_app_assoc, compatibilityUnit_iso, CategoryTheory.Adjunction.leftAdjointCommShift_commShiftIso, iso_inv_app, iso_hom_app
iso' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
compatibilityUnit_iso 📖mathematicalCategoryTheory.Adjunction.CommShift.CompatibilityUnit
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
iso
CategoryTheory.Functor.CommShift.commShiftIso
add_neg_cancel
iso_hom_app
CategoryTheory.Functor.map_shiftFunctorCompIsoId_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.Adjunction.right_triangle_components_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.shift_shiftFunctorCompIsoId_inv_app
CategoryTheory.Functor.comp_map
neg_add_cancel
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.comp_id
iso_hom_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Adjunction.unit
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
add_neg_cancel
CategoryTheory.conjugateEquiv_symm_apply_app
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Functor.map_shiftFunctorCompIsoId_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.comp_counit_app
CategoryTheory.Category.assoc
Mathlib.Tactic.CategoryTheory.CancelIso.hom_inv_id_of_eq_assoc
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.Iso.inv_inv
eq_neg_of_add_eq_zero_right
iso_hom_app_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Adjunction.unit
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_hom_app
iso_inv_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
CategoryTheory.Iso.hom
add_neg_cancel
CategoryTheory.conjugateEquiv_symm_apply_app
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.comp_counit_app
CategoryTheory.Category.assoc
eq_neg_of_add_eq_zero_right
iso_inv_app_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_app

CategoryTheory.Adjunction.RightAdjointCommShift

Definitions

NameCategoryTheorems
iso 📖CompOp
6 mathmath: iso_hom_app_assoc, compatibilityUnit_iso, iso_inv_app, iso_inv_app_assoc, iso_hom_app, CategoryTheory.Adjunction.rightAdjointCommShift_commShiftIso
iso' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
compatibilityUnit_iso 📖mathematicalCategoryTheory.Adjunction.CommShift.CompatibilityUnit
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
CategoryTheory.Functor.CommShift.commShiftIso
iso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app
neg_add_cancel
iso_inv_app
Equiv.injective
CategoryTheory.Adjunction.homEquiv_counit
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Adjunction.counit_naturality_assoc
CategoryTheory.Adjunction.left_triangle_components_assoc
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.shift_shiftFunctorCompIsoId_hom_app
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Functor.commShiftIso_hom_naturality_assoc
CategoryTheory.Adjunction.left_triangle_components
CategoryTheory.Functor.map_id
iso_hom_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Functor.map
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
neg_add_cancel
CategoryTheory.conjugateEquiv_apply_app
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Adjunction.comp_counit_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
AddRightCancelSemigroup.toIsRightCancelAdd
iso_hom_app_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Functor.map
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_hom_app
iso_inv_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
neg_add_cancel
CategoryTheory.conjugateEquiv_apply_app
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Adjunction.comp_counit_app
CategoryTheory.Functor.map_shiftFunctorCompIsoId_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
AddRightCancelSemigroup.toIsRightCancelAdd
iso_inv_app_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Functor.id
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Adjunction.counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_app

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
commShiftFunctor 📖CompOp
1 mathmath: commShift_of_inverse
commShiftInverse 📖CompOp
1 mathmath: commShift_of_functor

Theorems

NameKindAssumesProvesValidatesDepends On
commShift_of_functor 📖mathematicalCommShift
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
commShiftInverse
CommShift.mk'
CategoryTheory.Adjunction.CommShift.commShift_unit
CategoryTheory.Adjunction.commShift_of_leftAdjoint
commShift_of_inverse 📖mathematicalCommShift
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
commShiftFunctor
commShift_of_functor
CommShift.instSymm

CategoryTheory.Equivalence.CommShift

Definitions

NameCategoryTheorems
instCommShiftFunctorRefl 📖CompOp
2 mathmath: instRefl, CategoryTheory.Equivalence.IsTriangulated.refl
instCommShiftFunctorSymm 📖CompOp
3 mathmath: CategoryTheory.Equivalence.IsTriangulated.instIsTriangulatedFunctorSymmOfInverse, CategoryTheory.Equivalence.IsTriangulated.symm, instSymm
instCommShiftFunctorTrans 📖CompOp
2 mathmath: instTrans, CategoryTheory.Equivalence.IsTriangulated.trans
instCommShiftInverseRefl 📖CompOp
2 mathmath: instRefl, CategoryTheory.Equivalence.IsTriangulated.refl
instCommShiftInverseSymm 📖CompOp
3 mathmath: CategoryTheory.Equivalence.IsTriangulated.instIsTriangulatedInverseSymmOfFunctor, CategoryTheory.Equivalence.IsTriangulated.symm, instSymm
instCommShiftInverseTrans 📖CompOp
2 mathmath: instTrans, CategoryTheory.Equivalence.IsTriangulated.trans

Theorems

NameKindAssumesProvesValidatesDepends On
instCommShiftHomFunctorCounitIso 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.CommShift.id
CategoryTheory.Adjunction.CommShift.commShift_counit
instCommShiftHomFunctorUnitIso 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.CommShift.id
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Adjunction.CommShift.commShift_unit
instRefl 📖mathematicalCategoryTheory.Equivalence.CommShift
CategoryTheory.Equivalence.refl
instCommShiftFunctorRefl
instCommShiftInverseRefl
CategoryTheory.Adjunction.CommShift.instId
instSymm 📖mathematicalCategoryTheory.Equivalence.CommShift
CategoryTheory.Equivalence.symm
instCommShiftFunctorSymm
instCommShiftInverseSymm
mk'
CategoryTheory.NatTrans.CommShift.of_iso_inv
instCommShiftHomFunctorCounitIso
instTrans 📖mathematicalCategoryTheory.Equivalence.CommShift
CategoryTheory.Equivalence.trans
instCommShiftFunctorTrans
instCommShiftInverseTrans
CategoryTheory.Adjunction.CommShift.instComp
mk' 📖mathematicalCategoryTheory.Equivalence.CommShiftCategoryTheory.Adjunction.CommShift.commShift_counit
CategoryTheory.Adjunction.CommShift.mk'
mk'' 📖mathematicalCategoryTheory.Equivalence.CommShiftmk'
CategoryTheory.NatTrans.CommShift.of_iso_inv
instSymm

---

← Back to Index