Documentation Verification Report

CommShift

📁 Source: Mathlib/CategoryTheory/Shift/CommShift.lean

Statistics

MetricCount
DefinitionsCommShift, CommShift, CommShift, iso, commShiftIso, comp, id, iso, isoAdd, isoAdd', isoZero, isoZero', ofComp, ofHasShiftOfFullyFaithful, ofIso, CommShift, CommShiftCore
17
Theoremsmap_iso_hom_app, map_iso_hom_app_assoc, map_iso_inv_app, map_iso_inv_app_assoc, add, commShiftIso_add, commShiftIso_zero, comp_commShiftIso_hom_app, comp_commShiftIso_inv_app, id_commShiftIso_hom_app, id_commShiftIso_inv_app, isoAdd'_assoc, isoAdd'_hom_app, isoAdd'_inv_app, isoAdd'_isoZero, isoAdd_hom_app, isoAdd_inv_app, isoZero'_eq_isoZero, isoZero'_hom_app, isoZero'_inv_app, isoZero_hom_app, isoZero_inv_app, isoZero_isoAdd'_, ofComp_compatibility, ofIso_commShiftIso_hom_app, ofIso_commShiftIso_inv_app, ofIso_compatibility, zero, commShiftIso_add', commShiftIso_comp_hom_app, commShiftIso_comp_inv_app, commShiftIso_hom_naturality, commShiftIso_hom_naturality_assoc, commShiftIso_id_hom_app, commShiftIso_id_inv_app, commShiftIso_inv_naturality, commShiftIso_inv_naturality_assoc, commShiftIso_zero', map_shiftFunctorComm, map_shiftFunctorComm_assoc, map_shiftFunctorComm_hom_app, map_shiftFunctorCompIsoId_hom_app, map_shiftFunctorCompIsoId_hom_app_assoc, map_shiftFunctorCompIsoId_inv_app, map_shiftFunctorCompIsoId_inv_app_assoc, shiftFunctorIso_ofHasShiftOfFullyFaithful, associator, comp, id, leftUnitor, of_core, of_isIso, of_iso_inv, of_iso_symm, rightUnitor, shift_comm, verticalComposition, whiskerLeft, whiskerRight, add, app_shift, app_shift_assoc, shift_app, shift_app_assoc, shift_app_comm, shift_app_comm_assoc, shift_comm, shift_comm_assoc, zero, app_shift, app_shift_assoc, shift_app, shift_app_assoc, shift_app_comm, shift_app_comm_assoc, shift_comm, shift_comm_assoc
77
Total94

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
CommShift 📖CompData
9 mathmath: CommShift.mk', CommShift.instId, IsTriangulated.commShift, commShiftPullback, commShift_of_leftAdjoint, commShift_op, CategoryTheory.Pretriangulated.Opposite.commShift_adjunction_op_int, CommShift.instComp, commShift_of_rightAdjoint

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
CommShift 📖MathDef
8 mathmath: CommShift.mk', CommShift.instTrans, CommShift.instRefl, CommShift.mk'', commShift_of_functor, CategoryTheory.Pretriangulated.instCommShiftOppositeOpOpEquivalenceInt, commShift_of_inverse, CommShift.instSymm

CategoryTheory.Functor

Definitions

NameCategoryTheorems
CommShift 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
commShiftIso_add' 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CommShift.commShiftIso
CommShift.isoAdd'
CommShift.commShiftIso_add
commShiftIso_comp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CommShift.commShiftIso
CommShift.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CommShift.comp_commShiftIso_hom_app
commShiftIso_comp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CommShift.commShiftIso
CommShift.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CommShift.comp_commShiftIso_inv_app
commShiftIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
comp
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CommShift.commShiftIso
CategoryTheory.NatTrans.naturality
commShiftIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commShiftIso_hom_naturality
commShiftIso_id_hom_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.shiftFunctor
id
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CommShift.commShiftIso
CommShift.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CommShift.id_commShiftIso_hom_app
commShiftIso_id_inv_app 📖mathematicalCategoryTheory.NatTrans.app
comp
id
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CommShift.commShiftIso
CommShift.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CommShift.id_commShiftIso_inv_app
commShiftIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
comp
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CommShift.commShiftIso
CategoryTheory.NatTrans.naturality
commShiftIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commShiftIso_inv_naturality
commShiftIso_zero' 📖mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CommShift.commShiftIso
CommShift.isoZero'
CommShift.isoZero'_eq_isoZero
CommShift.commShiftIso_zero
map_shiftFunctorComm 📖mathematicalmap
obj
comp
CategoryTheory.shiftFunctor
AddCommMonoid.toAddMonoid
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.shiftFunctorComm
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CommShift.commShiftIso
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.congr_app
CommShift.commShiftIso_add
CategoryTheory.shiftFunctorComm_eq
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CommShift.isoAdd_hom_app
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
map_isIso
CategoryTheory.NatIso.inv_app_isIso
map_comp_assoc
CategoryTheory.Iso.inv_hom_id_app
map_id
CategoryTheory.Category.id_comp
add_comm
map_comp
commShiftIso_add'
CommShift.isoAdd'_hom_app
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
map_shiftFunctorComm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
AddCommMonoid.toAddMonoid
map
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.shiftFunctorComm
CommShift.commShiftIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_shiftFunctorComm
map_shiftFunctorComm_hom_app 📖mathematicalmap
obj
comp
CategoryTheory.shiftFunctor
AddCommMonoid.toAddMonoid
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.shiftFunctorComm
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CommShift.commShiftIso
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.congr_app
CommShift.commShiftIso_add
CategoryTheory.shiftFunctorComm_eq
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CommShift.isoAdd_hom_app
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
map_isIso
CategoryTheory.NatIso.inv_app_isIso
map_comp_assoc
CategoryTheory.Iso.inv_hom_id_app
map_id
CategoryTheory.Category.id_comp
map_comp
add_comm
commShiftIso_add'
CommShift.isoAdd'_hom_app
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
map_shiftFunctorCompIsoId_hom_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
map
obj
comp
CategoryTheory.shiftFunctor
id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CommShift.commShiftIso
CategoryTheory.NatTrans.congr_app
commShiftIso_add'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
map_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CommShift.commShiftIso_zero
CommShift.isoZero_hom_app
CommShift.isoAdd'_hom_app
map_comp
map_comp_assoc
CategoryTheory.Iso.hom_inv_id_app
map_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
map_shiftFunctorCompIsoId_hom_app_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
comp
id
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CategoryTheory.shiftFunctorCompIsoId
CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_shiftFunctorCompIsoId_hom_app
map_shiftFunctorCompIsoId_inv_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
map
obj
id
comp
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CategoryTheory.shiftFunctorCompIsoId
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CommShift.commShiftIso
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
map_isIso
CategoryTheory.NatIso.hom_app_isIso
map_comp
CategoryTheory.Iso.hom_inv_id_app
map_id
map_shiftFunctorCompIsoId_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.Category.id_comp
map_shiftFunctorCompIsoId_inv_app_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
id
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CategoryTheory.shiftFunctorCompIsoId
CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_shiftFunctorCompIsoId_inv_app
shiftFunctorIso_ofHasShiftOfFullyFaithful 📖mathematicalCommShift.commShiftIso
FullyFaithful.hasShift
CommShift.ofHasShiftOfFullyFaithful

CategoryTheory.Functor.CommShift

Definitions

NameCategoryTheorems
commShiftIso 📖CompOp
157 mathmath: zero, CategoryTheory.Adjunction.LeftAdjointCommShift.iso_hom_app_assoc, CategoryTheory.NatTrans.CommShiftCore.shift_app_comm, CategoryTheory.Functor.map_shiftFunctorComm_hom_app, CategoryTheory.Adjunction.LeftAdjointCommShift.iso_inv_app_assoc, CategoryTheory.Functor.mapTriangle_obj, CategoryTheory.Functor.commShiftOp_iso_eq, CategoryTheory.Functor.commShift₂_comm, CategoryTheory.LocalizerMorphism.commShift_iso_hom_app, CategoryTheory.Functor.commShiftIso_comp_hom_app, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_hom_app, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₁, CategoryTheory.Functor.commShiftIso_add', CategoryTheory.NatTrans.CommShift.shift_comm, CategoryTheory.LocalizerMorphism.commShift_iso_inv_app, commShiftIso_add, CategoryTheory.Pretriangulated.commShiftIso_opOp_inv_app, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_eq, CategoryTheory.Functor.shift_map_op_assoc, CategoryTheory.Pretriangulated.commShiftIso_opOp_hom_app_assoc, CategoryTheory.Adjunction.LeftAdjointCommShift.compatibilityUnit_iso, CategoryTheory.NatTrans.shift_comm_assoc, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, CategoryTheory.Adjunction.unit_app_shift_commShiftIso_inv_app, ofIso_commShiftIso_hom_app, CategoryTheory.Quotient.LiftCommShift.iso_hom_app, CategoryTheory.Functor.commShiftOfLocalization_iso_inv_app, CategoryTheory.Functor.commShiftOfLocalization.iso_inv_app, comp_commShiftIso_inv_app, CategoryTheory.Triangulated.Octahedron.map_m₃, CategoryTheory.Adjunction.shift_counit_app, CategoryTheory.Functor.map_shift_unop, CategoryTheory.Adjunction.leftAdjointCommShift_commShiftIso, CategoryTheory.Functor.op_commShiftIso_hom_app_assoc, CategoryTheory.Functor.mapTriangle_map_hom₁, CategoryTheory.NatTrans.CommShiftCore.shift_app, CategoryTheory.Functor.ShiftSequence.induced_shiftIso_hom_app_obj, CategoryTheory.NatTrans.shift_comm, CategoryTheory.LocalizerMorphism.commShift_iso_hom_app_assoc, CategoryTheory.Functor.commShiftPullback_iso_eq, add, CategoryTheory.Functor.ShiftSequence.induced.shiftIso_hom_app_obj, CategoryTheory.Functor.commShiftIso_hom_naturality_assoc, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_inv_app, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₃, CategoryTheory.Functor.ShiftSequence.induced_shiftIso_hom_app_obj_assoc, CategoryTheory.Localization.SmallShiftedHom.equiv_shift', CategoryTheory.Functor.commShiftIso_comp_inv_app, CategoryTheory.LocalizerMorphism.commShift_iso_inv_app_assoc, CategoryTheory.Functor.map_shiftFunctorCompIsoId_inv_app_assoc, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₃, CategoryTheory.Functor.map_shiftFunctorComm_assoc, CategoryTheory.Functor.map_shiftFunctorCompIsoId_hom_app_assoc, CategoryTheory.Functor.commShiftIso_hom_naturality, comp_commShiftIso_hom_app, CategoryTheory.Functor.op_commShiftIso_inv_app_assoc, CategoryTheory.Functor.map_shiftFunctorCompIsoId_hom_app, CategoryTheory.NatTrans.CommShiftCore.shift_app_assoc, CategoryTheory.Functor.CommShift₂.comm, CategoryTheory.Adjunction.commShiftIso_inv_app_counit_app_assoc, id_commShiftIso_inv_app, CategoryTheory.Functor.commShiftIso_inv_naturality_assoc, CategoryTheory.Adjunction.LeftAdjointCommShift.iso_inv_app, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₁, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₃, CategoryTheory.NatTrans.CommShiftCore.shift_app_comm_assoc, CategoryTheory.Triangulated.Octahedron.map_m₁, CategoryTheory.NatTrans.CommShiftCore.shift_comm, CategoryTheory.Adjunction.unit_app_shift_commShiftIso_inv_app_assoc, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_inv_app, CategoryTheory.Functor.commShiftOfLocalization.iso_inv_app_assoc, CategoryTheory.Functor.op_commShiftIso_inv_app, CategoryTheory.Functor.shiftFunctorIso_ofHasShiftOfFullyFaithful, CategoryTheory.NatTrans.CommShiftCore.shift_comm_assoc, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, id_commShiftIso_hom_app, CategoryTheory.Adjunction.commShiftIso_hom_app_counit_app_shift_assoc, CategoryTheory.SingleFunctors.postcomp_shiftIso_inv_app, CategoryTheory.Localization.SmallShiftedHom.equiv_shift, CategoryTheory.Adjunction.shift_unit_app, CategoryTheory.Adjunction.RightAdjointCommShift.iso_hom_app_assoc, CategoryTheory.Adjunction.unit_app_commShiftIso_hom_app_assoc, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, CategoryTheory.Functor.commShiftOfLocalization.iso_hom_app, CategoryTheory.NatTrans.app_shift_assoc, CategoryTheory.Functor.commShiftIso_id_hom_app, ofIso_commShiftIso_inv_app, CategoryTheory.Triangulated.SpectralObject.mapTriangulatedFunctor_δ, CategoryTheory.Functor.mapTriangle_map_hom₃, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, CategoryTheory.Functor.shift_map_op, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₂, CategoryTheory.Adjunction.RightAdjointCommShift.compatibilityUnit_iso, CategoryTheory.NatTrans.shift_app_assoc, CategoryTheory.NatTrans.CommShiftCore.app_shift, CategoryTheory.Pretriangulated.commShiftIso_opOp_hom_app, CategoryTheory.Triangulated.SpectralObject.mapTriangulatedFunctor_δ', CategoryTheory.Functor.commShiftIso_inv_naturality, HomotopyCategory.homologyFunctor_shiftMap_assoc, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₁, CategoryTheory.Pretriangulated.commShiftIso_opOp_inv_app_assoc, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_inv_app_assoc, CategoryTheory.Adjunction.RightAdjointCommShift.iso_inv_app, CategoryTheory.Functor.map_shift_unop_assoc, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, CategoryTheory.Quotient.liftCommShift_commShiftIso, CategoryTheory.Adjunction.RightAdjointCommShift.iso_inv_app_assoc, OfComp.map_iso_hom_app_assoc, CategoryTheory.Functor.commShiftIso_zero', CategoryTheory.Adjunction.unit_app_commShiftIso_hom_app, CategoryTheory.Functor.commShiftIso_id_inv_app, HomotopyCategory.homologyShiftIso_hom_app, CategoryTheory.Quotient.LiftCommShift.iso_inv_app, CategoryTheory.Adjunction.LeftAdjointCommShift.iso_hom_app, CategoryTheory.Functor.commShiftOfLocalization_iso_hom_app, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₃, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, CategoryTheory.Functor.commShiftOfLocalization.iso_hom_app_assoc, CategoryTheory.NatTrans.app_shift, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₂, CategoryTheory.NatTrans.shift_app_comm_assoc, CategoryTheory.NatTrans.shift_app, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_hom_app, CategoryTheory.Functor.ShiftSequence.induced_shiftMap, CategoryTheory.Functor.commShiftIso_eq_ofInduced, CategoryTheory.Functor.map_shiftFunctorComm, CategoryTheory.Functor.op_commShiftIso_hom_app, HomotopyCategory.homologyFunctor_shiftMap, CategoryTheory.Localization.SmallHom.equiv_shift, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₁, CategoryTheory.Adjunction.commShiftIso_inv_app_counit_app, CategoryTheory.NatTrans.shift_app_comm, CategoryTheory.Pretriangulated.commShiftIso_unopUnop_hom_app_assoc, CategoryTheory.Functor.map_shiftFunctorCompIsoId_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, OfComp.map_iso_inv_app, CategoryTheory.Adjunction.RightAdjointCommShift.iso_hom_app, CategoryTheory.Localization.SmallShiftedHom.equiv_apply, CategoryTheory.Functor.commShift₂_comm_assoc, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_hom_app, CategoryTheory.Adjunction.rightAdjointCommShift_commShiftIso, CategoryTheory.Adjunction.shift_unit_app_assoc, CategoryTheory.Functor.commShiftUnop_commShiftIso, CategoryTheory.Functor.ShiftSequence.induced_shiftMap_assoc, CategoryTheory.Adjunction.commShiftIso_hom_app_counit_app_shift, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, CategoryTheory.NatTrans.CommShiftCore.app_shift_assoc, CategoryTheory.SingleFunctors.postcomp_shiftIso_hom_app, commShiftIso_zero, OfComp.map_iso_hom_app, OfComp.map_iso_inv_app_assoc, CategoryTheory.Functor.mapTriangle_map_hom₂, CategoryTheory.Adjunction.shift_counit_app_assoc, CochainComplex.mappingCone.map_δ
comp 📖CompOp
46 mathmath: CategoryTheory.SingleFunctors.postcompPostcompIso_hom_hom_app, CategoryTheory.ObjectProperty.instCommShiftHomFunctorLiftCompιIso, CategoryTheory.LocalizerMorphism.natTransCommShift_hom, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₂, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.NatTrans.CommShift.leftUnitor, CategoryTheory.NatTrans.instCommShiftPullbackShiftHomFunctorNatIsoComp, CategoryTheory.Functor.commShiftIso_comp_hom_app, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₂, CategoryTheory.NatTrans.CommShift.verticalComposition, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, CategoryTheory.NatTrans.CommShift.whiskerRight, CategoryTheory.Adjunction.unit_app_shift_commShiftIso_inv_app, CategoryTheory.NatTrans.CommShift.associator, CategoryTheory.Quotient.liftCommShift_compatibility, CategoryTheory.NatTrans.CommShift.rightUnitor, comp_commShiftIso_inv_app, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₃, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₃, ofComp_compatibility, CategoryTheory.Equivalence.CommShift.instCommShiftHomFunctorCounitIso, CategoryTheory.Adjunction.CommShift.commShift_counit, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.Functor.commShiftIso_comp_inv_app, comp_commShiftIso_hom_app, CategoryTheory.Adjunction.commShiftIso_inv_app_counit_app_assoc, CategoryTheory.Adjunction.unit_app_shift_commShiftIso_inv_app_assoc, CategoryTheory.ShiftedHom.comp_map, CategoryTheory.Adjunction.IsTriangulated.comp, CategoryTheory.Adjunction.commShiftIso_hom_app_counit_app_shift_assoc, CategoryTheory.Adjunction.unit_app_commShiftIso_hom_app_assoc, CategoryTheory.Adjunction.CommShift.instComp, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₁, CategoryTheory.SingleFunctors.postcompPostcompIso_inv_hom_app, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₁, CategoryTheory.Adjunction.unit_app_commShiftIso_hom_app, CategoryTheory.Adjunction.CommShift.commShift_unit, CategoryTheory.NatTrans.commShift_iso_hom_of_localization, CategoryTheory.LocalizerMorphism.instCommShiftLocalizationHomFunctorIsoFunctorQLocalizedFunctor, CategoryTheory.Adjunction.commShiftIso_inv_app_counit_app, CategoryTheory.NatTrans.CommShift.whiskerLeft, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp, CategoryTheory.Adjunction.commShiftIso_hom_app_counit_app_shift, CategoryTheory.Equivalence.CommShift.instCommShiftHomFunctorUnitIso, CategoryTheory.Functor.IsTriangulated.instComp, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors
id 📖CompOp
23 mathmath: CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₃, CategoryTheory.NatTrans.CommShift.leftUnitor, CategoryTheory.Adjunction.IsTriangulated.id, CategoryTheory.NatTrans.instCommShiftPullbackShiftHomFunctorNatIsoId, CategoryTheory.Adjunction.CommShift.instId, CategoryTheory.NatTrans.CommShift.rightUnitor, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId, CategoryTheory.Equivalence.CommShift.instCommShiftHomFunctorCounitIso, CategoryTheory.Adjunction.CommShift.commShift_counit, id_commShiftIso_inv_app, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₃, id_commShiftIso_hom_app, CategoryTheory.Functor.commShiftIso_id_hom_app, CategoryTheory.Functor.IsTriangulated.instId, CategoryTheory.Functor.commShiftIso_id_inv_app, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₁, CategoryTheory.ShiftedHom.id_map, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₂, CategoryTheory.Adjunction.CommShift.commShift_unit, CategoryTheory.TwistShiftData.commShift, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₁, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₂, CategoryTheory.Equivalence.CommShift.instCommShiftHomFunctorUnitIso
iso 📖CompOp
isoAdd 📖CompOp
5 mathmath: isoAdd_hom_app, isoAdd_inv_app, commShiftIso_add, add, CategoryTheory.Adjunction.CommShift.compatibilityUnit_isoAdd
isoAdd' 📖CompOp
6 mathmath: CategoryTheory.Functor.commShiftIso_add', isoAdd'_assoc, isoAdd'_isoZero, isoAdd'_hom_app, isoZero_isoAdd'_, isoAdd'_inv_app
isoZero 📖CompOp
8 mathmath: zero, isoZero_hom_app, isoAdd'_isoZero, isoZero_inv_app, isoZero'_eq_isoZero, isoZero_isoAdd'_, commShiftIso_zero, CategoryTheory.Adjunction.CommShift.compatibilityUnit_isoZero
isoZero' 📖CompOp
4 mathmath: isoZero'_inv_app, isoZero'_eq_isoZero, CategoryTheory.Functor.commShiftIso_zero', isoZero'_hom_app
ofComp 📖CompOp
1 mathmath: ofComp_compatibility
ofHasShiftOfFullyFaithful 📖CompOp
1 mathmath: CategoryTheory.Functor.shiftFunctorIso_ofHasShiftOfFullyFaithful
ofIso 📖CompOp
3 mathmath: ofIso_commShiftIso_hom_app, ofIso_commShiftIso_inv_app, ofIso_compatibility

Theorems

NameKindAssumesProvesValidatesDepends On
add 📖mathematicalcommShiftIso
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
isoAdd
commShiftIso_add
commShiftIso_add 📖mathematicalcommShiftIso
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
isoAdd
commShiftIso_zero 📖mathematicalcommShiftIso
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
isoZero
comp_commShiftIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
commShiftIso
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
comp_commShiftIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
commShiftIso
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
id_commShiftIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
commShiftIso
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Category.comp_id
id_commShiftIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
commShiftIso
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Category.comp_id
isoAdd'_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
isoAdd'CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.naturality_2
isoAdd'_hom_app
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.shiftFunctorAdd'_assoc_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.shiftFunctorAdd'_assoc_inv_app
isoAdd'_hom_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoAdd'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorAdd'
CategoryTheory.Iso.inv
CategoryTheory.Category.id_comp
isoAdd'_inv_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoAdd'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.shiftFunctorAdd'
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
isoAdd'_isoZero 📖mathematicalisoAdd'
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
add_zero
isoZero
CategoryTheory.Iso.ext
add_zero
CategoryTheory.NatTrans.ext'
isoAdd'_hom_app
CategoryTheory.shiftFunctorAdd'_add_zero_hom_app
isoZero_hom_app
CategoryTheory.shiftFunctorAdd'_add_zero_inv_app
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
isoAdd_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoAdd
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorAdd
CategoryTheory.Iso.inv
isoAdd'_hom_app
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
isoAdd_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoAdd
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.shiftFunctorAdd
CategoryTheory.Functor.map
isoAdd'_inv_app
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
isoZero'_eq_isoZero 📖mathematicalisoZero'
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
isoZero
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Iso.refl_trans
CategoryTheory.Category.id_comp
isoZero_hom_app
isoZero'_hom_app 📖mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoZero'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.shiftFunctorZero'
CategoryTheory.Iso.inv
CategoryTheory.Category.id_comp
isoZero'_inv_app 📖mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoZero'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.shiftFunctorZero'
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
isoZero_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoZero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.shiftFunctorZero
CategoryTheory.Iso.inv
CategoryTheory.Category.id_comp
isoZero_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoZero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.shiftFunctorZero
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
isoZero_isoAdd'_ 📖mathematicalisoAdd'
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
zero_add
isoZero
CategoryTheory.Iso.ext
zero_add
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.naturality
isoAdd'_hom_app
CategoryTheory.shiftFunctorAdd'_zero_add_hom_app
isoZero_hom_app
CategoryTheory.shiftFunctorAdd'_zero_add_inv_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Functor.map_id
ofComp_compatibility 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
comp
ofComp
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_comp_hom_app
OfComp.map_iso_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
ofIso_commShiftIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
commShiftIso
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor.map
ofIso_commShiftIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
commShiftIso
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
ofIso_compatibility 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ofIso
CategoryTheory.NatTrans.ext'
CategoryTheory.Iso.hom_inv_id_app_assoc
zero 📖mathematicalcommShiftIso
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
isoZero
commShiftIso_zero

CategoryTheory.Functor.CommShift.OfComp

Definitions

NameCategoryTheorems
iso 📖CompOp
4 mathmath: map_iso_hom_app_assoc, map_iso_inv_app, map_iso_hom_app, map_iso_inv_app_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
map_iso_hom_app 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.inv
CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.full_whiskeringRight_obj
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.congr_app
map_iso_hom_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_iso_hom_app
map_iso_inv_app 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.full_whiskeringRight_obj
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.congr_app
map_iso_inv_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_iso_inv_app

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
CommShift 📖CompData
41 mathmath: CategoryTheory.ObjectProperty.instCommShiftHomFunctorLiftCompιIso, CategoryTheory.LocalizerMorphism.natTransCommShift_hom, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CommShift.leftUnitor, instCommShiftPullbackShiftHomFunctorNatIsoComp, CommShift.verticalComposition, instCommShiftPullbackShiftHomFunctorNatIsoId, CategoryTheory.Functor.CommShift₂.commShift_flip_map, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, CommShift₂.commShift_flipApp, commShiftPullback, CommShift.whiskerRight, CommShift.associator, CategoryTheory.Functor.CommShift₂.commShift_map, CategoryTheory.Quotient.liftCommShift_compatibility, CommShift.of_isIso, CommShift.rightUnitor, instCommShiftOppositeShiftHomFunctorNatIsoId, CommShift.comp, commShift_op, CategoryTheory.Functor.CommShift.ofComp_compatibility, CategoryTheory.Equivalence.CommShift.instCommShiftHomFunctorCounitIso, CategoryTheory.Adjunction.CommShift.commShift_counit, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.Pretriangulated.Opposite.commShift_natTrans_op_int, CommShift.of_iso_symm, CategoryTheory.Functor.CommShift.ofIso_compatibility, CategoryTheory.Adjunction.CommShift.commShift_unit, commShift_iso_hom_of_localization, CategoryTheory.LocalizerMorphism.instCommShiftLocalizationHomFunctorIsoFunctorQLocalizedFunctor, CategoryTheory.TwistShiftData.commShift, CategoryTheory.Functor.instCommShiftCochainComplexIntMapMap₂CochainComplex, CommShift.whiskerLeft, instCommShiftOppositeShiftHomFunctorNatIsoComp, CategoryTheory.Functor.instCommShiftCochainComplexIntMapFlipMap₂CochainComplex, CategoryTheory.Equivalence.CommShift.instCommShiftHomFunctorUnitIso, CommShift.id, CommShift.of_core, CommShift.of_iso_inv, CommShift₂.commShift_app, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors
CommShiftCore 📖CompData
1 mathmath: CommShiftCore.zero

Theorems

NameKindAssumesProvesValidatesDepends On
app_shift 📖mathematicalapp
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
shift_app_comm_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
app_shift_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
app_shift
shift_app 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.shiftFunctor
CategoryTheory.Functor.obj
app
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.hom
shift_app_comm
CategoryTheory.Iso.inv_hom_id_app_assoc
shift_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_app
shift_app_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
congr_app
shift_comm
shift_app_comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_app_comm
shift_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
CommShift.shift_comm
shift_comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_comm

CategoryTheory.NatTrans.CommShift

Theorems

NameKindAssumesProvesValidatesDepends On
associator 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.associator
CategoryTheory.Functor.CommShift.comp
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
comp 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskerRight_comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.shift_app_comm_assoc
CategoryTheory.NatTrans.shift_app_comm
id 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskerRight_id'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftUnitor 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.leftUnitor
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.CommShift.id
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
of_core 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.NatTrans.CommShiftCategoryTheory.NatTrans.CommShiftCore.shift_comm
of_isIso 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
of_iso_inv
of_iso_inv 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.ext'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.NatTrans.shift_app_comm_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
of_iso_symm 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.symm
of_iso_inv
rightUnitor 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.CommShift.id
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
shift_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
verticalComposition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.CommShift.comp
comp
whiskerRight
associator
whiskerLeft
of_iso_inv
whiskerLeft 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.CommShift.comp
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.NatTrans.shift_app_comm
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.id_comp
whiskerRight 📖mathematicalCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.CommShift.comp
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.whiskerRight_twice
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.NatTrans.shift_app_comm

CategoryTheory.NatTrans.CommShiftCore

Theorems

NameKindAssumesProvesValidatesDepends On
add 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.CommShift.commShiftIso_add
CategoryTheory.Functor.CommShift.isoAdd_hom_app
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_2
app_shift_assoc
app_shift
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id_app_assoc
app_shift 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
shift_app_comm_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
app_shift_assoc 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
app_shift
shift_app 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.Functor.map
CategoryTheory.shiftFunctor
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.hom
shift_app_comm
CategoryTheory.Iso.inv_hom_id_app_assoc
shift_app_assoc 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_app
shift_app_comm 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.NatTrans.congr_app
shift_comm
shift_app_comm_assoc 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_app_comm
shift_comm 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
shift_comm_assoc 📖mathematicalCategoryTheory.NatTrans.CommShiftCoreCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shift_comm
zero 📖mathematicalCategoryTheory.NatTrans.CommShiftCore
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.CommShift.commShiftIso_zero
CategoryTheory.Functor.CommShift.isoZero_hom_app
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc

---

← Back to Index