Documentation Verification Report

CommShiftTwo

📁 Source: Mathlib/CategoryTheory/Shift/CommShiftTwo.lean

Statistics

MetricCount
DefinitionsCommShift₂Setup, int, toTwistShiftData, Δ, CommShift₂, commShiftFlipObj, commShiftObj, precomp₁, precomp₂, CommShift₂Int, CommShift₂, CommShift₂Int
12
TheoremshΔ, int_z, int_Δ, z_zero₁, z_zero₂, comm, commShift_flip_map, commShift_map, commShift₂_comm, commShift₂_comm_assoc, commShift_app, commShift_flipApp, instCompFunctor, instIdFunctor
14
Total26

CategoryTheory

Definitions

NameCategoryTheorems
CommShift₂Setup 📖CompData—

CategoryTheory.CommShift₂Setup

Definitions

NameCategoryTheorems
int 📖CompOp
2 mathmath: int_Δ, int_z
toTwistShiftData 📖CompOp
4 mathmath: z_zero₂, z_zero₁, hΔ, int_z
Δ 📖CompOp
5 mathmath: CategoryTheory.Functor.commShift₂_comm, CategoryTheory.Functor.CommShift₂.comm, int_Δ, CategoryTheory.Functor.commShift₂_comm_assoc, hΔ

Theorems

NameKindAssumesProvesValidatesDepends On
hΔ 📖mathematical—Δ
Units
CategoryTheory.CatCenter
CategoryTheory.PullbackShift
Prod.instAddMonoid
AddCommMonoid.toAddMonoid
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.add
AddMonoidHom.fst
AddMonoidHom.snd
CategoryTheory.instCategoryPullbackShift
CategoryTheory.End.monoid
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
Units.instMul
Units.instInv
CategoryTheory.TwistShiftData.z
CategoryTheory.instHasShiftPullbackShift
toTwistShiftData
AddZero.toZero
——
int_z 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.TwistShiftData.z
CategoryTheory.PullbackShift
Prod.instAddMonoid
AddCommMonoid.toAddMonoid
Int.instAddCommMonoid
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.add
AddMonoidHom.fst
AddMonoidHom.snd
CategoryTheory.instCategoryPullbackShift
CategoryTheory.instHasShiftPullbackShift
toTwistShiftData
int
Units
CategoryTheory.CatCenter
CategoryTheory.End.monoid
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
DivInvMonoid.toZPow
Units.instDivInvMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CategoryTheory.Preadditive.instRingEnd
CategoryTheory.functorCategoryPreadditive
CategoryTheory.instPreadditivePullbackShift
Units.instOne
——
int_Δ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
Δ
Int.instAddCommMonoid
int
Units
CategoryTheory.CatCenter
CategoryTheory.End.monoid
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
DivInvMonoid.toZPow
Units.instDivInvMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CategoryTheory.Preadditive.instRingEnd
CategoryTheory.functorCategoryPreadditive
Units.instOne
——
z_zero₁ 📖mathematical—CategoryTheory.TwistShiftData.z
CategoryTheory.PullbackShift
Prod.instAddMonoid
AddCommMonoid.toAddMonoid
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.add
AddMonoidHom.fst
AddMonoidHom.snd
CategoryTheory.instCategoryPullbackShift
CategoryTheory.instHasShiftPullbackShift
toTwistShiftData
AddZero.toZero
Units
CategoryTheory.CatCenter
CategoryTheory.End.monoid
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
Units.instOne
——
z_zero₂ 📖mathematical—CategoryTheory.TwistShiftData.z
CategoryTheory.PullbackShift
Prod.instAddMonoid
AddCommMonoid.toAddMonoid
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.add
AddMonoidHom.fst
AddMonoidHom.snd
CategoryTheory.instCategoryPullbackShift
CategoryTheory.instHasShiftPullbackShift
toTwistShiftData
AddZero.toZero
Units
CategoryTheory.CatCenter
CategoryTheory.End.monoid
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
Units.instOne
——

CategoryTheory.Functor

Definitions

NameCategoryTheorems
CommShift₂ 📖CompData—
CommShift₂Int 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
commShift₂_comm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.shiftFunctor
AddCommMonoid.toAddMonoid
CategoryTheory.Functor
category
flip
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CommShift.commShiftIso
CommShift₂.commShiftObj
map
CommShift₂.commShiftFlipObj
CategoryTheory.Iso.inv
CategoryTheory.shiftComm
CategoryTheory.CatCenter.app
Units.val
CategoryTheory.CatCenter
CategoryTheory.End.monoid
id
CategoryTheory.CommShift₂Setup.Δ
—CommShift₂.comm
commShift₂_comm_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor
category
CategoryTheory.shiftFunctor
AddCommMonoid.toAddMonoid
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CommShift.commShiftIso
CommShift₂.commShiftObj
flip
map
CommShift₂.commShiftFlipObj
CategoryTheory.Iso.inv
CategoryTheory.shiftComm
CategoryTheory.CatCenter.app
Units.val
CategoryTheory.CatCenter
CategoryTheory.End.monoid
id
CategoryTheory.CommShift₂Setup.Δ
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commShift₂_comm

CategoryTheory.Functor.CommShift₂

Definitions

NameCategoryTheorems
commShiftFlipObj 📖CompOp
5 mathmath: CategoryTheory.Functor.commShift₂_comm, commShift_flip_map, CategoryTheory.NatTrans.CommShift₂.commShift_flipApp, comm, CategoryTheory.Functor.commShift₂_comm_assoc
commShiftObj 📖CompOp
5 mathmath: CategoryTheory.Functor.commShift₂_comm, commShift_map, comm, CategoryTheory.Functor.commShift₂_comm_assoc, CategoryTheory.NatTrans.CommShift₂.commShift_app
precomp₁ 📖CompOp—
precomp₂ 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
AddCommMonoid.toAddMonoid
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor.CommShift.commShiftIso
commShiftObj
CategoryTheory.Functor.map
commShiftFlipObj
CategoryTheory.Iso.inv
CategoryTheory.shiftComm
CategoryTheory.CatCenter.app
Units.val
CategoryTheory.CatCenter
CategoryTheory.End.monoid
CategoryTheory.Functor.id
CategoryTheory.CommShift₂Setup.Δ
——
commShift_flip_map 📖mathematical—CategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.Functor.map
AddCommMonoid.toAddMonoid
commShiftFlipObj
——
commShift_map 📖mathematical—CategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
AddCommMonoid.toAddMonoid
commShiftObj
——

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
CommShift₂ 📖CompData
2 mathmath: CommShift₂.instCompFunctor, CommShift₂.instIdFunctor
CommShift₂Int 📖MathDef—

CategoryTheory.NatTrans.CommShift₂

Theorems

NameKindAssumesProvesValidatesDepends On
commShift_app 📖mathematical—CategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
AddCommMonoid.toAddMonoid
CategoryTheory.Functor.CommShift₂.commShiftObj
——
commShift_flipApp 📖mathematical—CategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.NatTrans.flipApp
AddCommMonoid.toAddMonoid
CategoryTheory.Functor.CommShift₂.commShiftFlipObj
——
instCompFunctor 📖mathematical—CategoryTheory.NatTrans.CommShift₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.NatTrans.CommShift.comp
commShift_app
CategoryTheory.Functor.map_comp
commShift_flipApp
instIdFunctor 📖mathematical—CategoryTheory.NatTrans.CommShift₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.NatTrans.CommShift.id
CategoryTheory.Functor.map_id

---

← Back to Index