Documentation Verification Report

Induced

📁 Source: Mathlib/CategoryTheory/Shift/Induced.lean

Statistics

MetricCount
DefinitionsofInduced, add, zero, induced
4
TheoremscommShiftIso_eq_ofInduced, add_hom_app_obj, add_inv_app_obj, zero_hom_app_obj, zero_inv_app_obj, shiftFunctorAdd_hom_app_obj_of_induced, shiftFunctorAdd_inv_app_obj_of_induced, shiftFunctorZero_hom_app_obj_of_induced, shiftFunctorZero_inv_app_obj_of_induced, shiftFunctor_of_induced
10
Total14

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
shiftFunctorAdd_hom_app_obj_of_induced 📖mathematicalNatTrans.app
shiftFunctor
HasShift.induced
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Functor.comp
Iso.hom
Functor
Functor.category
shiftFunctorAdd
Functor.obj
CategoryStruct.comp
Category.toCategoryStruct
Functor.map
Iso.inv
HasShift.Induced.add_hom_app_obj
shiftFunctorAdd_inv_app_obj_of_induced 📖mathematicalNatTrans.app
Functor.comp
shiftFunctor
HasShift.induced
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Iso.inv
Functor
Functor.category
shiftFunctorAdd
Functor.obj
CategoryStruct.comp
Category.toCategoryStruct
Functor.map
Iso.hom
HasShift.Induced.add_inv_app_obj
shiftFunctorZero_hom_app_obj_of_induced 📖mathematicalNatTrans.app
shiftFunctor
HasShift.induced
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Functor.id
Iso.hom
Functor
Functor.category
shiftFunctorZero
Functor.obj
CategoryStruct.comp
Category.toCategoryStruct
Functor.comp
Functor.map
HasShift.Induced.zero_hom_app_obj
shiftFunctorZero_inv_app_obj_of_induced 📖mathematicalNatTrans.app
Functor.id
shiftFunctor
HasShift.induced
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Iso.inv
Functor
Functor.category
shiftFunctorZero
Functor.obj
CategoryStruct.comp
Category.toCategoryStruct
Functor.comp
Functor.map
HasShift.Induced.zero_inv_app_obj
shiftFunctor_of_induced 📖mathematicalshiftFunctor
HasShift.induced

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
commShiftIso_eq_ofInduced 📖mathematicalCommShift.commShiftIso
CategoryTheory.HasShift.induced
CommShift.ofInduced
CategoryTheory.Iso.symm
CategoryTheory.Functor
category
comp
CategoryTheory.shiftFunctor

CategoryTheory.Functor.CommShift

Definitions

NameCategoryTheorems
ofInduced 📖CompOp
1 mathmath: CategoryTheory.Functor.commShiftIso_eq_ofInduced

CategoryTheory.HasShift

Definitions

NameCategoryTheorems
induced 📖CompOp
6 mathmath: CategoryTheory.shiftFunctorZero_inv_app_obj_of_induced, CategoryTheory.shiftFunctorAdd_inv_app_obj_of_induced, CategoryTheory.shiftFunctorZero_hom_app_obj_of_induced, CategoryTheory.shiftFunctor_of_induced, CategoryTheory.Functor.commShiftIso_eq_ofInduced, CategoryTheory.shiftFunctorAdd_hom_app_obj_of_induced

CategoryTheory.HasShift.Induced

Definitions

NameCategoryTheorems
add 📖CompOp
2 mathmath: add_inv_app_obj, add_hom_app_obj
zero 📖CompOp
2 mathmath: zero_inv_app_obj, zero_hom_app_obj

Theorems

NameKindAssumesProvesValidatesDepends On
add_hom_app_obj 📖mathematicalCategoryTheory.NatTrans.app
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
add
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorAdd
CategoryTheory.Iso.inv
CategoryTheory.Functor.map_preimage
CategoryTheory.NatTrans.congr_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
add_inv_app_obj 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
add
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.shiftFunctorAdd
CategoryTheory.Functor.map_preimage
CategoryTheory.NatTrans.congr_app
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
zero_hom_app_obj 📖mathematicalCategoryTheory.NatTrans.app
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
zero
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorZero
CategoryTheory.Functor.map_preimage
CategoryTheory.NatTrans.congr_app
CategoryTheory.Category.comp_id
zero_inv_app_obj 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
zero
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.shiftFunctor
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.shiftFunctorZero
CategoryTheory.Functor.map_preimage
CategoryTheory.NatTrans.congr_app
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp

---

← Back to Index