Documentation Verification Report

InducedShiftSequence

📁 Source: Mathlib/CategoryTheory/Shift/InducedShiftSequence.lean

Statistics

MetricCount
Definitionsinduced, isoZero, shiftIso
3
TheoremsisoZero_hom_app_obj, shiftIso_hom_app_obj, induced_isoShiftZero_hom_app_obj, induced_isoShiftZero_hom_app_obj_assoc, induced_shiftIso_hom_app_obj, induced_shiftIso_hom_app_obj_assoc, induced_shiftMap, induced_shiftMap_assoc
8
Total11

CategoryTheory.Functor.ShiftSequence

Definitions

NameCategoryTheorems
induced 📖CompOp
6 mathmath: induced_shiftIso_hom_app_obj, induced_shiftIso_hom_app_obj_assoc, induced_isoShiftZero_hom_app_obj_assoc, induced_shiftMap, induced_isoShiftZero_hom_app_obj, induced_shiftMap_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
induced_isoShiftZero_hom_app_obj 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.shift
induced
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.isoShiftZero
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
induced.isoZero_hom_app_obj
induced_isoShiftZero_hom_app_obj_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.shift
induced
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.isoShiftZero
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
induced_isoShiftZero_hom_app_obj
induced_shiftIso_hom_app_obj 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Functor.shift
induced
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.shiftIso
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Functor.CommShift.commShiftIso
induced.shiftIso_hom_app_obj
induced_shiftIso_hom_app_obj_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.shift
induced
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.shiftIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
induced_shiftIso_hom_app_obj
induced_shiftMap 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.Functor.shiftMap
induced
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.shift
CategoryTheory.Iso.inv
CategoryTheory.Functor.map_comp
induced_shiftIso_hom_app_obj
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality_assoc
induced_shiftMap_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.shift
induced
CategoryTheory.Functor.shiftMap
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
induced_shiftMap

CategoryTheory.Functor.ShiftSequence.induced

Definitions

NameCategoryTheorems
isoZero 📖CompOp
1 mathmath: isoZero_hom_app_obj
shiftIso 📖CompOp
1 mathmath: shiftIso_hom_app_obj

Theorems

NameKindAssumesProvesValidatesDepends On
isoZero_hom_app_obj 📖mathematicalCategoryTheory.NatTrans.app
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoZero
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Functor.shift
CategoryTheory.Functor.isoShiftZero
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.congr_app
CategoryTheory.Functor.map_preimage
shiftIso_hom_app_obj 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
shiftIso
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.shift
CategoryTheory.Functor.shiftIso
CategoryTheory.NatTrans.congr_app
CategoryTheory.Functor.map_preimage
CategoryTheory.Category.id_comp

---

← Back to Index